In the present study the in vivo mechanism of calcium-phosphate (CaP) ceramic degradation has been investigated by means of transmission electron microscopy. The results revealed osteoclast-mediated degradation of hydroxyapatite ceramic implanted into sheep bone by simultaneous resorption and phagocytosis. After 6 weeks of implantation, osteoclasts were localized immediately beneath the ceramic surface. They had formed resorption lacunae and exhibited typical ultrastructural features, such as the ruffled border, the clear zone, and the dorsal microvilli. Their resorption capacity also had become evident by alterations of the electron density and the shape of the CaP crystals localized within the acidic microenvironment of the ruffled border. Moreover, the osteoclasts simultaneously were capable of phagocytosing the resorbed CaP crystals. The formation of endophagosomes was performed (1) by the uptake of particles into large intracellular vacuoles, which were generated by deep invagination of the membranes of the osteoclastic ruffled border, and (2) by the encircling of particles due to the development of pseudopodia-like plasmaprotrusions of the ruffled border. The formation of endophagosomes was followed by the in situ fragmentation of the inclusion material, which subsequently was released into the extracellular space and phagocytosed by macrophages.
Acetylcholine (ACh) is detected in a variety of non-neuronal cells where it acts as a para/autocrine signaling molecule controlling basic cell functions such as proliferation, differentation, and maintenance of cell-cell contacts. ACh-synthesizing enzymes include choline acetyltransferase and carnitine acetyltransferase (CarAT). ACh is released through vesicular exocytosis or directly from the cytoplasm via organic cation transporters (OCT). Extracellular ACh binds to nicotinic (nAChR) and muscarinic receptors (MR). Degradation of ACh is performed by acetylcholinesterase and butyrylcholinesterase (BChE). Here, we have determined whether these molecules are expressed in osteoblast-like cells, by means of reverse transcription polymerase chain reaction and immunohistochemistry, focusing on nAChR subunits alpha3 and alpha5. RNA for CarAT, OCT-1, M2R, M5R, nAChR subunits alpha3, alpha5, alpha9, alpha10, beta2, beta3, and BChE were detected in human (SAOS-2) and murine (MC3T3-E1) osteoblast-like cells. Other cholinergic components were only expressed species-specifically, e.g., M3R and nAChR subunit alpha7. Immunhistochemistry localized the nAChR subunits alpha3 and alpha5 in osteoblasts in vitro and in vivo where they were up-regulated after application of bone morphogenetic protein-2 (BMP-2) during fracture healing in a rat model. Thus, the cholinergic system of osteoblast-like cells might be regulated by BMP-2 during bone remodeling. Osteoblast-like cells express all necessary enzymes, transporters, and receptors for ACh synthesis and recycling.
The development of new and better implant materials adapted to osteoporotic bone is still urgently required. Therefore, osteoporotic muscarinic acetylcholine receptor M3 (M3 mAChR) knockout (KO) and corresponding wild type (WT) mice underwent osteotomy in the distal femoral metaphysis. Fracture gaps were filled with a pasty α-tricalcium phosphate (α-TCP)-based hydroxyapatite (HA)-forming bone cement containing mesoporous bioactive CaP-SiO2 glass particles (cement/MBG composite) with or without Brain-Derived Neurotrophic Factor (BDNF) and healing was analyzed after 35 days. Histologically, bone formation was significantly increased in WT mice that received the BDNF-functionalized cement/MBG composite compared to control WT mice without BDNF. Cement/MBG composite without BDNF increased bone formation in M3 mAChR KO mice compared to equally treated WT mice. Mass spectrometric imaging showed that the BDNF-functionalized cement/MBG composite implanted in M3 mAChR KO mice was infiltrated by newly formed tissue. Leukocyte numbers were significantly lower in M3 mAChR KO mice treated with BDNF-functionalized cement/MBG composite compared to controls without BDNF. C-reactive protein (CRP) concentrations were significantly lower in M3 mAChR KO mice that received the cement/MBG composite without BDNF when compared to WT mice treated the same. Whereas alkaline phosphatase (ALP) concentrations in callus were significantly increased in M3 mAChR KO mice, ALP activity was significantly higher in WT mice. Due to a stronger effect of BDNF in non osteoporotic mice, higher BDNF concentrations might be needed for osteoporotic fracture healing. Nevertheless, the BDNF-functionalized cement/MBG composite promoted fracture healing in non osteoporotic bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.