In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.
Human DNA topoisomerase IIα is a biological nanomachine
that
regulates the topological changes of the DNA molecule and is considered
a prime target for anticancer drugs. Despite intensive research, many
atomic details about its mechanism of action remain unknown. We investigated
the ATPase domain, a segment of the human DNA topoisomerase IIα,
using all-atom molecular simulations, multiscale quantum mechanics/molecular
mechanics (QM/MM) calculations, and a point mutation study. The results
suggested that the binding of ATP affects the overall dynamics of
the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors
the dissociative substrate-assisted reaction mechanism with the catalytic
Glu87 serving to properly position and polarize the lytic water molecule.
The point mutation study complemented our computational results, demonstrating
that Lys378, part of the important QTK loop, acts as a stabilizing
residue. The work aims to pave the way to a deeper understanding of
these important molecular motors and to advance the development of
new therapeutics.
The emergence of SARS-CoV-2, responsible for the global COVID-19 pandemic, requires the rapid development of novel antiviral drugs that would contribute to an effective treatment alongside vaccines. Drug repurposing and development of new molecules targeting numerous viral targets have already led to promising drug candidates. To this end, versatile molecular scaffolds with high functionalization capabilities play a key role. Starting with the clinically used conformationally flexible HIV-1 protease inhibitors that inhibit replication of SARS-CoV-2 and bind major protease 3CLpro, we designed and synthesized a series of rigid bicyclo[2.2.2]octenes fused to N-substituted succinimides to test whether this core scaffold could support the development of non-covalent 3CLpro inhibitors. Inhibition assays confirmed that some compounds can inhibit the SARS-CoV-2 main protease; the most promising compound 11a inhibited 3CLpro in micromolar range (IC50 = 102.2 μM). Molecular simulations of the target-ligand complex in conjunction with dynophore analyses and endpoint free energy calculations provide additional insight and first recommendations for future optimization. The fused bicyclo[2.2.2]octenes can be used as a new potential starting point in the development of non-covalent SARS-CoV-2 3CLpro protease inhibitors and the study also substantiates the potential of this versatile scaffold for the development of biologically active molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.