Li-ion all-solid-state batteries (ASSBs) employing solid electrolytes (SEs) can address the energy density and safety issues that plague the current state-of-the-art Li-ion battery (LIB) architecture. To that end, intimate physical and chemical bonding has to be established between high-performance cathodes and high-voltage stable SEs to facilitate high Li + transfer. The production of intimate interfaces in oxide cathode−solid electrolyte composites requires high-temperature (>1000 °C) processing, which results in a range of degradation products. Here, we report the morphological, structural, and chemical changes that occur in commercial Ni-rich layered LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) cathode in contact with oxide SE Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) when cosintered between 550 °C and 650 °C. The structural evolution of pristine NCM622 heat-treated at a temperature of 650 °C is contrasted with the NCM622 from the composites using aberration-corrected scanning transmission electron microscopy (AC-STEM). At high spatial resolutions, the degradation of NCM particles in the composites proceeds via phase transitions from R3̅ m (layered) to Fd3̅ m (spinel) to Fm3̅ m (rocksalt) to amorphous at the grain boundaries and via pit formations and intragranular crack nucleation and propagation in the bulk. Automated crystal orientation mapping (ACOM) in combination with low-dose TEM was used to investigate the beam-sensitive cathode−solid electrolyte interfaces. To provide statistical relevance to the investigations undertaken, ACOM-TEM was used in combination with time-of-flight secondary ion mass spectroscopy (ToF-SIMS). By combining these techniques, we show that the phase transitions of the NCM particles are correlated with simultaneous lithium transfer from NCM regions to LATP regions with evolving temperature.
This works presents a system level analysis of a Deorbit Kit (DK) based on electrodynamic tether technology. The analysis is focused on two relevant scenarios for deorbiting space debris: (i) Earth Observation (EO) satellites with mass in the range of 700 kg -1000 kg and initial orbital altitude of 800 km and 98°inclination, and (ii) Mega Constellation (MC) spacecraft in the order of 200 kg and initial orbit at 1200 km of altitude and 90°of inclination. The scenarios have been selected considering the orbits that are already suffering from the space debris problem or will suffer in the next future. The DK implements a bare electrodynamic tether for capturing electrons passively from the ambient plasma while three different methods are considered for emitting the electrons back to the plasma to reach a steady electrical current on the tether. The three studied options to close the electrical circuit are: (a) a hollow cathode, which has a high technological maturity but needs expellant and a little of power, (b) a thermionic emitter, which does not involve expellant but needs power, and (c) a Low Work-function Tether (LWT) that does not need neither expellant nor power because it has a segment coated with a special material that emits electrons passively through the thermionic and photoelectric effects. In order to provide a fully autonomous operation even in case of critical failure of the mother spacecraft, the DK includes a deployment mechanism, a telemetry and telecommand system, a complete Attitude Determination and Control System with attitude sensors (GNSS, sun sensors, magnetometer) and actuators (magneto torquers), solar panels and batteries. Upon activation, the DK autonomously de-tumbles the satellite, deploys a tether and carries out the satellite's de-orbiting. The study presents DK architectures, mass budgets and simulation results for the two scenarios. It is shown that a complete DK with mass below 6% the mass of the host spacecraft can deorbit EO and MC satellites in about 1.5 years and 10 years, respectively. The importance of the development of the LWT concept to enhance the simplicity and reduce the mass, power and volume budget is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.