The input of nitrogen (N) and phosphorus (P) into rivers has been reduced in recent decades in many regions of the world to mitigate adverse eutrophication effects. However, legislation focused first on the reduction of nutrient loads from point sources and only later on diffuse sources. These reduction strategies have implications on riverine N:P stoichiometry, which potentially alter patterns of algal nutrient limitation and the functions or community structure of aquatic ecosystems. Here, we use a dataset spanning four decades of water quality for the Ruhr River (Germany) to show that the asynchronous implementation of point and diffuse source mitigation measures combined with time lags of catchment transport processes caused a temporally asynchronous reduction in dissolved inorganic nitrogen and total phosphorus concentrations. This asynchronous reduction increased the molar N:P ratios from around 30 to 100 in the river sections dominated by point sources, reducing the probability of N limitation of algae in favor of P limitation.
The Ruhr River catchment and the environmental policies implemented here illustrate the unintended effects of nutrient control strategies on the ecological stoichiometry at the catchment scale. We urge to assess systematically, whether unintentionally warped macronutrient ratios are observable in other managed river systems and to evaluate their environmental impacts.
Abstract:Mongolia is not only a water-scarce but also a data-scarce country with regard to environmental information. At the same time, regional effects of global climate change, major land use changes, a booming mining sector, and growing cities with insufficient and decaying water and wastewater infrastructures result in an increasingly unsustainable exploitation and contamination of ground and surface water resources putting at risk both aquatic ecosystems and human health. For the mesoscale (≈15,000 km 2 ) model region of the Kharaa River Basin (KRB), we investigated (1) the current state of aquatic ecosystems, water availability and quality; (2) past and expected future trends in these fields and
OPEN ACCESSWater 2015, 7 3487 their drivers; (3) water governance structures and their recent reforms; and (4) technical and non-technical interventions as potential components of an integrated water resources management (IWRM). By now, the KRB is recognized as one of the most intensively studied river basins of the country, and considered a model region for science-based water resources management by the Mongolian government which recently adopted the IWRM concept in its National Water Program. Based on the scientific results and practical experiences from a six-year project in the KRB, the potentials and limitations of IWRM implementation under the conditions of data-scarcity are discussed.
Mongolia is a water-scarce land-locked country, and available water resources are utilized for multiple purposes including irrigation, food preparation, drinking water for livestock and people. Limited data availability on water hygiene means that the related risks to public health are only partially understood. This is particularly problematic due to the widespread use of unimproved water sources such as surface water and water from simple shallow wells. Based on two field surveys in the Kharaa River Basin in spring 2017 and 2018, we assessed the presence and quantity of total coliforms (TC), fecal coliforms (FC), and E. coli bacteria in surface waters and wells and investigated potential linkages between temperature and hygiene. In the Kharaa River and its tributaries, TC concentrations averaged at a most probable number of (MPN) of 754 ± 761 per 100 mL and FC concentrations at an MPN of 31 ± 33. Only small and non-significant correlations between coliform concentrations and temperature were identified. Coliforms concentrations in wells were lower (average MPN for TC: 550 ± 1286, and for FC 58 ± 253). There was considerable variation between wells, with moderate but significant correlations between temperature and bacterial counts. Low water temperatures in April and May (just above freezing to less than 6.5 °C in wells and 7.5 °C to 14.5 °C in the river system) and the positive correlations between temperature and coliform concentrations particularly for well samples indicate that further warming is likely to increase the risks of microbiological water pollution. In the future, this should be complemented by modeling at a watershed scale. This should include the consideration of a trend towards stronger rainfall events, changes in livestock density, and urban sewage treatment and discharge, which are other likely drivers of changes in water hygiene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.