A SPAD-based line sensor fabricated in 130 nm CMOS technology capable of acquiring time-resolved fluorescence spectra (TRFS) in 8.3 milliseconds is presented. To the best of our knowledge, this is the fastest time correlated single photon counting (TCSPC) TRFS acquisition reported to date. The line sensor is an upgrade to our prior work and incorporates: i) parallelized interface from sensor to surrounding circuitry enabling high line rate to the PC (19,000 lines/s) and ii) novel time-gating architecture where detected photons in the OFF region are rejected digitally after the output stage of the SPAD. The time-gating architecture was chosen to avoid electrical transients on the SPAD high voltage supplies when gating is achieved by excess bias modulation. The time-gate has an adjustable location and time window width allowing the user to focus on time-events of interest. On-chip integrated center-of-mass (CMM) calculations provide efficient acquisition of photon arrivals and direct lifetime estimation of fluorescence decays. Furthermore, any of the SPC, TCSPC and on-chip CMM modes can be used in conjunction with the time-gating. The higher readout rate and versatile architecture greatly empower the user and will allow widespread applications across many techniques and disciplines. Here we focused on 3 examples of TRFS and time-gated Raman spectroscopy: i) kinetics of chlorophyll A fluorescence from an intact leaf; ii) kinetics of a thrombin biosensor FRET probe from quenched to fluorescence states; iii) ex vivo mouse lung tissue autofluorescence TRFS; iv) time-gated Raman spectroscopy of toluene at 3056 cm peak. To the best of our knowledge, we detect spectrally for the first time the fast rise in fluorescence lifetime of chlorophyll A in a measurement over single fluorescent transient.
Full exploitation of fibre Raman probes has been limited by the obstruction of weak Raman signals by background fluorescence of the sample and the intrinsic Raman signal of the delivery fibre. Here we utilised functionalised gold nanoshells (NS) to take advantage of the surface-enhanced Raman spectroscopy (SERS) effect to enhance the pH responsive spectrum of 4-mercaptobenzoic acid (MBA). However, the fibre background is still dominant. Using the photon arrival time-resolving capability of a CMOS single-photon avalanche diode (SPAD) based line sensor, we recover the SERS spectrum without a fibre background in a 10 s measurement. In this manner, pH sensing through a multimode fibre at a low excitation power that is safe for future in vivo applications, with short acquisition times (10 or 60 s), is demonstrated. A measurement precision of ± 0.07 pH units is thus achieved.
Solitary pulmonary nodules (SPNs) are a clinical challenge, given there is no single clinical sign or radiological feature that definitively identifies a benign from a malignant SPN. The early detection of lung cancer has a huge impact on survival outcome. Consequently, there is great interest in the prompt diagnosis, and treatment of malignant SPNs. Current diagnostic pathways involve endobronchial/transthoracic tissue biopsies or radiological surveillance, which can be associated with suboptimal diagnostic yield, healthcare costs and patient anxiety. Cutting-edge technologies are needed to disrupt, and improve, existing care pathways. Optical fibre-based techniques, which can be delivered via the working channel of a bronchoscope or via transthoracic needle, may deliver advanced diagnostic capabilities in patients with SPNs. Optical endomicroscopy, an autofluorescence-based imaging technique, demonstrates abnormal alveolar structure in SPNs in vivo. Alternative optical fingerprinting approaches, such as time-resolved fluorescence spectroscopy and fluorescence-lifetime imaging microscopy, have shown promise in discriminating lung cancer from surrounding healthy tissue. Whilst fibre-based Raman spectroscopy has enabled real-time characterisation of SPNs in vivo. Fibre-based technologies have the potential to enable in situ characterisation and real-time microscopic imaging of SPNs, which could aid immediate treatment decisions in patients with SPNs. This review discusses advances in current imaging modalities for evaluating SPNs, including computed tomography (CT) and positron emission tomography-CT. It explores the emergence of optical fibre-based technologies, and discusses their potential role in patients with SPNs and suspected lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.