Background: Obesity is a risk factor for stress-related mental disorders such as post-traumatic stress disorder. The underlying mechanism through which obesity affects mental health remains poorly understood but dysregulation of the ghrelin system may be involved. Stress increases plasma ghrelin levels, which stimulates food intake as a potential stress-coping mechanism. However, diet-induced obesity induces ghrelin resistance which in turn may have deleterious effects on stress-coping. In our study, we explored whether disruption of ghrelin receptor function though high-fat diet or genetic ablation affects fear processing, anxietylike behavior and saccharin preference in mice.Results: High-fat diet exposure had no significant effect on auditory fear conditioning and its subsequent extinction or on anxiety-like behavior but significantly lowered saccharin preference. Similarly, ghrelin receptor knockout mice did not differ significantly from their wild-type littermates for auditory fear processing or anxiety-like behavior but showed significantly lower saccharin preference compared to wild-type littermates.
Conclusion:Taken together, our data suggest that disruption of ghrelin receptor function per se does not affect fear or anxiety-like behavior but may decrease saccharin preference in mice.
Objective: To investigate whether context-specific alerts for potassium-increasing drug-drug interactions (DDIs) in a clinical decision support system reduced the alert burden, increased alert acceptance, and had an effect on the occurrence of hyperkalemia.
Materials and Methods:In the pre-intervention period all alerts for potassium-increasing DDIs were level 1 alerts advising absolute contraindication, while in the post-intervention period the same drug combinations could trigger a level 1 (absolute contraindication), a level 2 (monitor potassium values), or a level 3 alert (informative, not shown to physicians) based on the patient's recent laboratory value of potassium. Alert acceptance was defined as non-prescription or non-administration of the interacting drug combination for level 1 alerts and as monitoring of the potassium levels for level 2 alerts.
Results:The alert burden decreased by 92.8%. The relative risk (RR) for alert acceptance based on prescription rates for level 1 alerts and monitoring rates for level 2 alerts was 15.048 (86.5% vs 5.7%; 95% CI 12.037 -18.811; P < 0.001). With alert acceptance for level 1 alerts based on actual administration and for level 2 alerts on monitoring rates, the RR was 3.597 (87.6% vs 24.4%; 95% CI 3.192 -4.053; P < 0.001).In the generalized linear mixed model the effect of the intervention on the occurrence of hyperkalemia was not significant (OR 1.091, 95% CI 0.172 -6.919).
Conclusion:The proposed strategy seems effective to get a grip on the delicate balance between overand under alerting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.