Environmental stress has been suggested to increase host susceptibility to infections and reduce host ability to resist parasite growth and reproduction, thus benefiting parasites. This prediction stems from expected costs of immune defence; hosts in poor condition should have less resources to be allocated to immune function. However, the alternative hypothesis for response to environmental stress is that hosts in poor condition provide less resources for parasites and/or suffer higher mortality, leading to reduced parasite growth, reproduction and survival. We contrasted these alternative hypotheses in a trematodeÁsnail (Diplostomum spathaceumÁLymnaea stagnalis) system by asking: (1) how host condition affects parasite reproduction (amount and quality of produced transmission stages) and (2) how host condition affects the survival of infected host individuals. We experimentally manipulated host condition by starving the snails, and found that parasites produced fewer and poorer quality transmission stages in stressed hosts. Furthermore, starvation increased snail mortality. These findings indicate that in well-established trematode infections, reduced ability of immune allocation has no effect on host exploitation by parasites. Instead, deteriorating resources for the snail host can directly limit the amount of resources available for the parasite. This, together with increased host mortality, may have negative effects on parasite populations in the wild.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequencydependent selection that counterbalances the population growth-rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite-mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/ absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2-4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasitemediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.
According to the Red Queen hypothesis for sex, parasite-mediated selection against common clones counterbalances the reproductive advantage of asexual lineages, which would otherwise outcompete sexual conspecifics. Such selection on the clonal population is expected to lead to a faster clonal turnover in habitats where selection by parasites is stronger. We tested this prediction by comparing the genetic structure of clonal and sexual populations of freshwater snail Potamopyrgus antipodarum between years 2003 and 2007 in three depth-specific habitats in Lake Alexandrina (South Island, New Zealand). These habitats differ in the risk of infection by castrating trematodes and in the relative proportion of sexual individuals. As predicted, we found that the clonal structure changed significantly in shallow and mid-water habitats, where prevalence of infection was high, but not in the deep habitat, where parasite prevalence was low. Additionally, we found that both clonal diversity and evenness of the asexual population declined in the shallow habitat. In contrast, the genetic structure (based on F-statistics) of the coexisting sexual population did not change, which suggests that the change in the clonal structure cannot be related to genetic changes in the sexual population. Finally, the frequency of sexuals had no effect on the diversity of the sympatric clonal population. Taken together, our results show a more rapid clonal turnover in high-infection habitats, which gives support for the Red Queen hypothesis for sex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.