Glyphosate is the most extensively used herbicide in the world. However, concerns regarding its safety, side effects, and impact on other organisms have increased in recent years. This is the first study to analyze a large set of recent and historical Escherichia coli isolates varying in pathogenicity and beta-lactam resistance from different host species for their susceptibility to glyphosate isopropylamine salt (IPA), the active ingredient of the herbicide, and to a complete glyphosate-containing formulation (Roundup LB Plus). For this, minimum inhibitory concentrations (MIC) were determined for 238 E. coli isolates by broth microdilution in Mueller Hinton I media followed by the statistical analyses using Mann-Whitney-U test, multivariable analysis of variance (ANOVA) and a multivariable proportional-odds ordinal regression model. While the overall MIC distribution was narrow and lacked a highly resistant sub-population for both substances, statistical analyses revealed small but significant associations between glyphosate resistance levels and different factors tested. Mean MIC values for the entire dataset showed a higher level of resistance to the complete glyphosate-containing formulation (40 mg/ml IPA) than to pure glyphosate (10 mg/ml IPA) in E. coli . Isolates that originated from poultry had significantly higher MIC values for both pure glyphosate and the complete formulation. Pathogenic and non-extended-spectrum beta-lactamase (non-ESBL) E. coli isolates each showed significantly higher MIC values compared to commensals and ESBL-producing E. coli in pure glyphosate, but not in the complete formulation. Recently sampled isolates showed statistically higher MICs than the isolates of the historic standard E. coli collection of reference in pure glyphosate, when tested by nonparametric Mann-Whitney-U test, but not in the multivariable model. Further investigations are necessary to confirm whether these associations have a casual relationship with the glyphosate use or are the consequence of co-selection due to the increased application rates of antibiotics, heavy metals or other biocides. A possible accumulation of pathogenic bacteria in livestock animals fed with glyphosate-containing feed should also be considered.
Human deaths from rabies are preventable and can be eliminated by applying a systematic One Health approach. However, this ancient disease still threatens the lives of millions of people in up to 150 countries and kills an estimated 59, 000 people every year. Rabies today is largely a disease of poverty, almost always linked to dog bites, with most deaths occurring in neglected communities in Africa and Asia. The disease places an immense economic burden on its victims, a cost that far outweighs the investment needed to control it. A global framework for rabies elimination in humans is set out in Zero by 30: The Global Strategic Plan to end human deaths from dog-mediated rabies by 2030. Despite the existence of proven control strategies and agreement on the path to eliminating human rabies deaths, mortality numbers from rabies remain high, and COVID-19 has set back efforts even further. But COVID-19 has also highlighted the value of a One Health approach to zoonotic disease and pandemic prevention. Rabies control programs offer a practical route to building One Health capacities that can also address other zoonotic threats, including those with pandemic potential. The United Against Rabies Forum aims to accelerate progress on rabies elimination while applying a One Health approach. The Forum promotes cross-sector collaboration among stakeholders and supports countries in their rabies elimination efforts. Increased political engagement and resource mobilization, both internationally and nationally, will be needed to achieve global rabies goals and can also make One Health implementation a reality.
Glyphosate, the active compound of Roundup, is one of the most used pesticides in the world. Its residues are often detected in animal feed, but the impact on the animal gut microbiota and on pathogens of the intestine has not intensively been investigated. In this study, we analyzed the minimum inhibitory concentration (MIC) of glyphosate isopropylamine salt and a common glyphosate-containing herbicide formulation in 225 Salmonella enterica isolates by broth microdilution. A bacteriostatic effect of glyphosate on Salmonella growth was detected at the concentration range of 10 to 80 mg/mL for both the active ingredient and the ready-to-use formulation. Time/year of isolation, host species, and serovars revealed a statistically significant influence on MIC values. Recently collected Salmonella isolates had significantly higher MIC values for glyphosate and the glyphosate-containing product compared with isolates collected between 1981 and 1990. Isolates from pigs showed significantly higher MIC values compared with isolates from poultry, and isolates of the Salmonella serovar Typhimurium had significantly higher MIC values than Salmonella Enteritidis and Infantis isolates.
Rabies vaccination is a crucial part of rabies post-exposure prophylaxis (PEP), but it tends to consist of long and costly regimens of intramuscular (IM) injections. Most human rabies deaths are caused by delayed access, unaffordability or ineffective delivery of PEP. Reducing these barriers is crucial to ensure that this incurable yet preventable disease does not cost lives. In 2022, WHO published new guidance towards the introduction or expansion of rabies vaccination into national immunization programmes to systematically drive down human rabies deaths effectively and cost-efficiently. Such guidance grounds on the latest scientific recommendation provided by WHO’s Strategic Advisory Group of Experts in 2018. WHO recommends a shortened 1-week rabies vaccination schedule, with visits on days 0, 3 and 7. On each visit, a 2-site intradermal (ID) injection (using only 0.1 ml of vaccine in each site) is administered. ID administration allows for vials to be shared among several patients within a 6-8 hours timeline. Compared to IM administration, ID is cost- and dose-sparing, even in low-throughput clinics. Additionally, this regimen requires only 3 visits to the healthcare facility, improving patient compliance. However, the uptake of this shortened ID regimen remains limited. It should now be a matter of urgency for Health Ministries in rabies-endemic settings to adopt the WHO-recommended shortened ID vaccination schedule and ensure appropriate medical training to improve PEP delivery. This will enable countries to improve PEP delivery and allow underserved populations to access affordable, life-saving rabies vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.