Astrocytes are activated in experimental autoimmune encephalomyelitis (EAE) and have been suggested to either aggravate or ameliorate EAE. However, the mechanisms leading to an adverse or protective effect of astrocytes on the course of EAE are incompletely understood. To gain insight into the astrocyte-specific function of gp130 in EAE, we immunized mice lacking cell surface expression of gp130, the signal-transducing receptor for cytokines of the IL-6 family, with myelin oligodendrocyte glycoprotein35–55 peptide. These glial fibrillary acid protein (GFAP)-Cre gp130fl/fl mice developed clinically a significantly more severe EAE than control mice and succumbed to chronic EAE. Loss of astrocytic gp130 expression resulted in apoptosis of astrocytes in inflammatory lesions of GFAP-Cre gp130fl/fl mice, whereas gp130fl/fl control mice developed astrogliosis. Astrocyte loss of GFAP-Cre gp130fl/fl mice was paralleled by significantly larger areas of demyelination and significantly increased numbers of CD4 T cells in the CNS. Additionally, loss of astrocytes in GFAP-Cre gp130fl/fl mice resulted in a reduction of CNS regulatory Foxp3+ CD4 T cells and an increase of IL-17–, IFN-γ–, and TNF-producing CD4 as well as IFN-γ– and TNF-producing CD8 T cells, illustrating that astrocytes regulate the phenotypic composition of T cells. An analysis of mice deficient in either astrocytic gp130– Src homology region 2 domain-containing phosphatase 2/Ras/ERK or gp130–STAT1/3 signaling revealed that prevention of astrocyte apoptosis, restriction of demyelination, and T cell infiltration were dependent on the astrocytic gp130–Src homology region 2 domain-containing phosphatase 2/Ras/ERK, but not on the gp130–STAT1/3 pathway, further demonstrating that gp130-dependent astrocyte activation is crucial to ameliorate EAE.
Toxoplasma gondii infects astrocytes, neurons and microglia cells in the CNS and, after acute encephalitis, persists within neurons. Robust astrocyte activation is a hallmark of Toxoplasma encephalitis (TE); however, the in vivo function of astrocytes is largely unknown. To study their role in TE we generated C57BL/6 GFAP-Cre gp130fl/fl mice (where GFAP is glial fibrillary acid protein), which lack gp130, the signal-transducing receptor for IL-6 family cytokines, in their astrocytes. In the TE of wild-type mice, the gp130 ligands IL-6, IL-11, IL-27, LIF, oncostatin M, ciliary neurotrophic factor, B cell stimulating factor, and cardiotrophin-1 were up-regulated. In addition, GFAP+ astrocytes of gp130fl/fl control mice were activated, increased in number, and efficiently restricted inflammatory lesions and parasites, thereby contributing to survival from TE. In contrast, T. gondii- infected GFAP-Cre gp130fl/fl mice lost GFAP+ astrocytes in inflammatory lesions resulting in an inefficient containment of inflammatory lesions, impaired parasite control, and, ultimately, a lethal necrotizing TE. Production of IFN-γ and the IFN-γ-induced GTPase (IGTP), which mediate parasite control in astrocytes, was even increased in GFAP-Cre gp130fl/fl mice, indicating that instead of the direct antiparasitic effect the immunoregulatory function of GFAP-Cre gp130fl/fl astrocytes was disturbed. Correspondingly, in vitro infected GFAP-Cre gp130fl/fl astrocytes inhibited the growth of T. gondii efficiently after stimulation with IFN-γ, whereas neighboring noninfected and TNF-stimulated GFAP-Cre gp130fl/fl astrocytes became apoptotic. Collectively, these are the first experiments demonstrating a crucial function of astrocytes in CNS infection.
Toxoplasma (T.) gondii infects astrocytes, neurons and microglia cells in the CNS and, after acute encephalitis, persists within neurons. Robust astrocyte activation is a hallmark of Toxoplasma encephalitis (TE); however, the in vivo function of astrocytes is largely unknown. To study their role in TE, we generated C57BL/6 GFAP-Cre gp130 fl/ fl mice, which lack gp130, the signal transducing receptor for IL-6 family cytokines, in their astrocytes. In TE of wildtype mice, the gp130 ligands IL-6, IL-11, IL-27, LIF, oncostatin M, ciliary neurotrophic factor, B cell stimulating factor, and cardiotrophin-1 were upregulated. In addition, GFAP + astrocytes of gp130 fl/fl control mice were activated, increased in number, and efficiently restricted inflammatory lesions and parasites, thereby, contributing to survival from TE. In contrast, T. gondii-infected GFAPCre gp130 fl/fl mice lost GFAP + astrocytes in inflammatory lesions resulting in an inefficient containment of inflammatory lesions, impaired parasite control and, ultimately, a lethal necrotizing TE. Production of IFN-gamma and IGTP, which mediate parasite control in astrocytes, were even increased in GFAP-Cre gp130 fl/fl mice indicating that instead of the direct anti-parasitic effect the immunoregulatory function of GFAP-Cre gp130 fl/fl astrocytes was disturbed. Correspondingly, in vitro infected GFAP-Cre gp130 fl/fl astrocytes inhibited growth of T. gondii efficiently after stimulation with IFN-gamma, whereas neighbouring non-infected and TNF-stimulated GFAP-Cre gp130 fl/fl astrocytes became apoptotic. Collectively, these are the first experiments demonstrating a crucial function of astrocytes in CNS infection.from Infectious diseases of the nervous system: pathogenesis and worldwide impact Paris,
The obligate intracellular parasite Toxoplasma gondii infects and persists within neurons of approximately one-third of the human population. Intracerebral control of T. gondii largely depends on interferon (IFN)-γ-producing T cells, which induce antiparasitic effector mechanisms in infected cells, as well as immunosuppressive cytokines, which prevent immunopathology. To gain further insight into the role of neurons in Toxoplasma encephalitis (TE), we generated C57BL/6 synapsin-I (Syn)-Cre gp130(fl/fl) mice, which lack gp130, the signal-transducing receptor for the IL-6 family of cytokines, in their neurons. On infection with T. gondii, Syn-Cre gp130(fl/fl) mice failed to control T. gondii infection and died of necrotizing TE before day 77. In contrast, gp130(fl/fl) control mice efficiently restricted parasite replication and survived the infection. TE in Syn-Cre gp130(fl/fl) mice was characterized by a hyperinflammatory immune response with increased numbers of IL-17- and IFN-γ-producing CD4 and CD8 T cells but reduced intracerebral production of immunosuppressive transforming growth factor (TGF)-β and IL-27. Additional in vitro experiments found that IL-6 stimulation of neurons induced gp130-dependent TGF-β1, TGF-β2, and IL-27 production. Importantly, gp130 expression and stimulation with IL-6 cytokine family members also reduced death and apoptosis of infected cultured neurons. Correspondingly, TE in Syn-Cre gp130(fl/fl) but not gp130(fl/fl) mice was characterized by progressive neuronal loss. Collectively, these findings indicate a crucial protective function of gp130-expressing neurons in a model of chronic encephalitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.