Human campylobacteriosis is a major public health concern in developed countries, with Campylobacter jejuni and Campylobacter coli from poultry recognized as the main source of human infection. Identification of Campylobacter-positive broiler herds before slaughter is essential for implementing measures to avoid carryover of pathogens via the slaughter process into the food chain. However, appropriate methods that have been validated for testing poultry flocks antemortem are lacking for Campylobacter. A quantitative real-time PCR (qPCR) that allows simultaneous detection and quantification of C. jejuni and C. coli was adapted and optimized to be applied on boot socks. The adjusted qPCR serves as an easy, sensitive, and quantitative method for Campylobacter detection in poultry flocks antemortem by analysis of boot socks. An adequate correlation was found between qPCR and culture, as well as between boot socks and cecal samples, which are regarded as the "gold standard." Therefore, boot sock sampling followed by qPCR analysis provides a reliable and simple method for assessing Campylobacter load within a flock prior to slaughter. The approach allows categorization of broiler herds into negative, low, moderate, or high Campylobacter colonization. Based on the results of this new approach, risk assessment models, such as evaluating the possible effect of sorting flocks before slaughter, can be easily implemented. Similarly, targeted identification of highly colonized flocks for improvement of biosecurity measures at the farm level will become feasible, presenting an opportunity to increase food safety.
Human campylobacteriosis is the most prevalent zoonosis, with chicken meat contributing substantially to the number of cases. Measures to avoid or at least reduce exposure by meat contaminated with Campylobacter (C.) spp. are needed. With regard to the process hygiene criterion introduced in 2018 for Campylobacter spp. on broiler carcasses, we evaluated the performance of a recently developed quantitative real-time PCR (qPCR) for C. jejuni/coli on random caecal samples and chicken meat. With the qPCR on pooled caecal samples not only C. jejuni/coli positive (69.6%) versus negative broiler herds (30.4%) were identified, but herds highly colonized with C. jejuni/coli (39.4%) could also be identified. From the chicken meat samples, 8.0% were positive for C. jejuni/coli by qPCR and 0.7% by enumeration (>10 cfu/g) compared to 58.3% using cultural enrichment. Given the higher sensitivity, the qPCR method could replace the currently used enumeration method to assess the process hygiene criterion for Campylobacter spp. on broiler carcasses. Moreover, with the qPCR, a reliable identification of C. jejuni/coli colonized incoming broiler herds a few days before slaughter is feasible, which provides important information to optimize slaughter processes. Finally, identifying and monitoring herds with high C. jejuni/coli colonization rates could help to individually improve biosecurity measures at farm level, eventually reducing the C. jejuni/coli load on chicken meat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.