Mobile devices (smartphones or tablets) as experimental tools (METs) offer inspiring possibilities for science education, but until now, there has been little research studying this approach. Previous research indicated that METs have positive effects on students' interest and curiosity. The present investigation focuses on potential cognitive effects of METs using video analyses on tablets to investigate pendulum movements and an instruction that has been used before to study effects of smartphones' acceleration sensors. In a quasi-experimental repeated-measurement design, a treatment group uses METs (TG, N TG = 23) and a control group works with traditional experimental tools (CG, N CG = 28) to study the effects on interest, curiosity, and learning achievement. Moreover, various control variables were taken into account. We suppose that pupils in the TG have a lower extraneous cognitive load and higher learning achievement than those in the CG working with traditional experimental tools. ANCOVAs showed significantly higher levels of learning achievement in the TG (medium effect size). No differences were found for interest, curiosity, or cognitive load. This might be due to a smaller material context provided by tablets, in comparison to smartphones, as more pupils possess and are familiar with smartphones than with tablets. Another reason for the unchanged interest might be the composition of the sample: While previous research showed that especially originally less-interested students profited most from using METs, the current sample contained only specialized courses, i.e., students with a high original interest, for whom the effect of METs on their interest is presumably smaller.
Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a 'nuisance effect' into a source of useful information, making additional measurements with stopwatches or the like unnecessary.
The importance of Scanning Tunneling Microscopy (STM) in today’s research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on earlier work we applied mobile devices such as smartphones and tablets instead of using a computer to record and display the experimental data and thus converted Euler’s experimental setup into a low-cost experiment that is easy to build and handle by students themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.