Several groups of mammals use the Earth's magnetic field for orientation, but their magnetosensory organ remains unknown. The Ansell's mole-rat (
Fukomys anselli
, Bathyergidae, Rodentia) is a microphthalmic subterranean rodent with innate magnetic orientation behaviour. Previous studies on this species proposed that its magnetoreceptors are located in the eye. To test this hypothesis, we assessed magnetic orientation in mole-rats after the surgical removal of their eyes compared to untreated controls. Initially, we demonstrate that this enucleation does not lead to changes in routine behaviours, including locomotion, feeding and socializing. We then studied magnetic compass orientation by employing a well-established nest-building assay under four magnetic field alignments. In line with previous studies, control animals exhibited a significant preference to build nests in magnetic southeast. By contrast, enucleated mole-rats built nests in random magnetic orientations, suggesting an impairment of their magnetic sense. The results provide robust support for the hypothesis that mole-rats perceive magnetic fields with their minute eyes, probably relying on magnetite-based receptors in the cornea.
Several groups of mammals use the Earth's magnetic field for orientation, but their magnetosensory organ remains unknown. The Ansell's mole-rat (Fukomys anselli) is a subterranean rodent with innate magnetic orientation behavior. Previous studies proposed that its magnetoreceptors are located in the eye. To test this hypothesis, we assessed magnetic orientation in enucleated mole-rats.Initially, we demonstrate that enucleation of mole-rats does not lead to changes in routine behaviors. We then studied magnetic compass orientation by employing a well-established nest building assay. To ensure that directional responses were based on magnetic parameters, we tested animals under four magnetic field alignments. In line with previous studies, control animals exhibited a significant preference to build nests in magnetic south-east. In contrast, enucleated mole-rats built nests in random magnetic orientations, suggesting an impairment of their magnetic sense. The results provide robust support for the hypothesis that mole-rats perceive magnetic fields with their minute eyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.