Severe working conditions on board high-speed craft adversely affect not only the safety, health and performance of the crew but also the performance of the vessel as a technical system. Human factors-based ship design combined with appropriate vibration mitigation techniques and work routines for the crew can improve the working conditions and reduce the risks for performance degradation and adverse health effects. To enable development and use of such means, methods for prediction and evaluation of working conditions are needed for both existing high-speed craft and craft under design. This article presents a 2-degree-of-freedom seat model compatible with both measured and simulated input data. The interaction between seat and human is treated using the concept of apparent mass. The model is validated against experiment data collected on board a 10-m, 50-knot high-speed craft equipped with high-standard suspension seats. Evaluation measures defined in ISO 2631-1 and ISO 2631-5 are used to compare experiment data to modelled data. The seat model slightly overestimates the experiment S ed dose by a mean of 6.5% and underestimates the experiment vibration dose value (8 h) by 4.0%. It is concluded that model data correlate well with experiment data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.