Geupel et al. [Acta Cryst. (2002), C58, i9±i13] are reported. The ®gures on page i10 are printed in the wrong order, i.e. Fig. 1 should in fact be Fig. 2 and vice versa. The ®gure captions are given correctly. In the last sentence of the Comment section, the coef®cient of the linear thermal expansion should be replaced by a (with the subscript referring to the a axis of the orthorhombic unit cell), so that the sentence reads`The a value is comparable with that obtained from Raman scattering experiments....'.
Crystalline dicaesium mercury tetrachloride (Cs(2)HgCl(4)) is isomorphous with beta-K(2)SO(4) (space group Pnma, Z = 4) in its normal phase at room temperature. On cooling a sequence of incommensurate and commensurate superstructures occurs, below T = 221 K with modulations parallel to a*, and below 184 K with modulations along c*. The commensurately modulated structures at T = 185 K with q = (1/5)a* and at T = 176 K with q = (1/3)c* were determined using X-ray scattering with synchrotron radiation. The structure at T = 185 K has superspace group Pnma(alpha,0,0)0ss with alpha = 0.2. Lattice parameters were determined as a = 5 x 9.7729 (1), b = 7.5276 (4) and c = 13.3727 (7) Å. Structure refinements converged to R = 0.050 (R = 0.042 for 939 main reflections and R = 0.220 for 307 satellites) for the section t = 0.05 of superspace. The fivefold supercell has space group Pn2(1)a. The structure at T = 176 K has superspace group Pnma(0,0,gamma)0s0 with gamma = 1/3. Lattice parameters were determined as a = 9.789 (3), b = 7.541 (3) and c = 3 x 13.418 (4) Å. Structure refinements converged to R = 0.067 (R = 0.048 for 2130 main reflections, and R = 0.135 for 2382 satellite reflections) for the section t = 0. The threefold supercell has space group P112(1)/a. It is shown that the structures of both low-temperature phases can be characterized as different superstructures of the periodic room-temperature structure. The superstructure of the 5a-modulated phase is analysed in terms of displacements of the Cs atoms, and rotations and distortions of HgCl(4) tetrahedral groups. In the 3c-modulated phase the distortions of the tetrahedra are relaxed, but they are replaced by translations of the tetrahedral groups in addition to rotations.
An autoindexing procedure is described that produces the indexing of diffraction data of aperiodic crystals. The procedure has been designed for indexing the data obtained with an area detector, but it can also be applied to data obtained with a single‐point detector. The essential step in the indexing process is the ability to discriminate between reflections that fit to a reciprocal lattice, the satellite reflections and possible reflections that do not belong to this indexing. To achieve this goal, the refinement of the orientation matrix and the diffractometer parameters is made an intrinsic part of the process of indexing. The proposed autoindexing procedure has been implemented in a computer program called BAYINDEX. Successful application to data sets of three different one‐dimensionally modulated structures, one two‐dimensionally modulated structure and a periodic crystal is presented. Very good agreement between experimental and theoretical reflection positions is found. The indexing produced by BAYINDEX can serve as the basis for integration routines.
A sequence of steps for determining a crystal structure, possibly without ambiguities, is presented. The prerequisites are: centrosymmetry (at present) and two different anomalous scatterers, a~, a~. Their partial structure amplitudes [F,t(hkl) I and IF,2(hkl)l are separated by multiple-wavelength measurements (MAD). The core part of the method is a recursive algebraic technique applied to the geometrical part of these structure amplitudes from central reciprocal-lattice rows. At least m + 1 reflections are necessary at each row if 2m atoms of e.g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.