Dentate granule cells and the hippocampal CA2 region are resistant to cell loss associated with mesial temporal lobe epilepsy (MTLE). It is known that granule cells undergo mossy fiber sprouting in the dentate gyrus which contributes to a recurrent, proepileptogenic circuitry in the hippocampus. Here it is shown that mossy fiber sprouting also targets CA2 pyramidal cell somata and that the CA2 region undergoes prominent structural reorganization under epileptic conditions. Using the intrahippocampal kainate mouse model for MTLE and the CA2-specific markers Purkinje cell protein 4 (PCP4) and regulator of G-Protein signaling 14 (RGS14), it was found that during epileptogenesis CA2 neurons survive and disperse in direction of CA3 and CA1 resulting in a significantly elongated CA2 region. Using transgenic mice that express enhanced green fluorescent protein (eGFP) in granule cells and mossy fibers, we show that the recently described mossy fiber projection to CA2 undergoes sprouting resulting in aberrant large, synaptoporin-expressing mossy fiber boutons which surround the CA2 pyramidal cell somata. This opens up the potential for altered synaptic transmission that might contribute to epileptic activity in CA2. Indeed, intrahippocampal recordings in freely moving mice revealed that epileptic activity occurs concomitantly in the dentate gyrus and in CA2. Altogether, the results call attention to CA2 as a region affected by MTLE-associated pathological restructuring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.