Mountains are hotspots of biodiversity. Yet, evaluating their importance in global biodiversity inventories requires the adoption of a pertinent definition of mountains. Here, we first compare the well-established WCMC and GMBA definitions, which both use geographical information systems. We show that the WCMC approach arrives at twice the global mountain area and much higher human population numbers than the GMBA one, which is explained by the inclusion of (mostly) low latitude hill country below 600 m elevation. We then present an inventory of the world's mountains based on the GMBA definition. In this inventory, each of the 1003 entries corresponds to a polygon drawn around a mountain or a mountain range and includes the name of the delineated object, the area of mountainous terrain it covers stratified into different bioclimatic belts (all at 2.5 0 resolution), and demographic information. Taken together, the 1003 polygons cover 13.8 Mio km 2 of mountain terrain, of which 3.3 Mio km 2 are in the alpine and nival belts. This corresponds to 83.7% of the global mountain area sensu GMBA, and 94% of the alpine/ nival area. The 386 Mio people inhabiting mountainous terrain within polygons represent 75% of the people globally inhabiting mountains sensu GMBA. This inventory offers a robust framework for the integration of mountain biota in regional and larger scale biodiversity assessments, for biogeography, bioclimatology, macroecology, and conservation research, and for the exploration of a multitude of socio-ecological and climate change-related research questions in mountain biota, including the potential pressure on alpine ecosystems.
Current land use and climate change are prompting questions about the ability of plants to adapt to such environmental change. Therefore, we experimentally addressed plant performance and quantitative-genetic diversity of the common Alpine Meadow Grass Poa alpina. We asked how land use and altitude affect the occurrence of P. alpina in the field and whether its common-garden performance suggests adaptation to conditions at plant origin and differences in quantitative genetic diversity among plant origins. Among 216 candidate grassland sites of different land use and altitude from 12 villages in the Swiss Alps, P. alpina occurred preferentially in fertilized and grazed sites and at higher elevations. In a common garden at 1,500 m asl, we grew two plants of [600 genotypes representing 78 grassland sites. After 2 years, nearly 90% of all plants had reproduced. In agreement with adaptive advantages of vegetative reproduction at higher altitudes, only 23% of reproductive plants from lower altitudes reproduced via vegetative bulbils, but 55% of plants from higher altitudes. In agreement with adaptive advantages of reproduction in grazed sites, allocation to reproductive biomass was higher in plants from grazed grasslands than from mown ones. For 53 grasslands, we also investigated broad-sense heritability H 2 , which was significant for all studied traits and twice as high for grazed as for mown grasslands. Moreover, possibly associated with their higher landscape diversity, H 2 was higher for sites of villages of Romanic cultural tradition than for those of Germanic and Walser traditions. We suggest promoting diverse land use regimes to conserve not only landscape and plant species diversity, but also adaptive genetic differentiation and heritable genetic variation.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.