Background & Aims:
Induction of immediate early transcription factors (ITF) represents the first transcriptional program controlling mitogen stimulated cell cycle progression in cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc and its role in pancreatic cancer growth in vitro and in vivo.
Methods:
Expression of ITF proteins were examined by RT-PCR and immunoblotting, and their implications in cell cycle progression and growth were determined by flow cytometry and [3H] thymidine incorporation. Intracellular Ca2+ concentrations, calcineurin activity and cellular NFAT distribution were analyzed. Transcription factor complex formations and promoter regulation were examined by immunoprecipitations, reporter gene assays and chromatin immunoprecipitation (ChIP). Using a combination of RNAi knockdown technology and xenograft models we analyzed the significance for pancreatic cancer tumor growth.
Results:
Serum promotes pancreatic cancer growth through induction of the proproliferative NFAT-c-Myc axis. Mechanistically, serum increases intracellular Ca2+ concentrations and activates the calcineurin/NFAT pathway to induce c-Myc transcription. NFAT binds to a serum responsive element within the proximal promoter, initiates p300-dependent histone acetylation and creates a local chromatin structure permissive for the inducible recruitment of ELK-1, a protein required for maximal activation of the c-Myc promoter. The functional significance of this novel pathway was emphasized by impaired c-Myc expression, G1-arrest and reduced tumor growth upon NFAT depletion in vitro and in vivo.
Conclusion:
Our study uncovers a novel mechanism regulating cell growth and identifies the NFAT-ELK complex as modulators of early stages of mitogen stimulated proliferation in pancreatic cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.