It is thought that a Th1/Th17-weighted immune response plays a predominant role in the pathogenesis of psoriasis. Our findings now indicate a link between IL-9, a Th2 and Th9 cytokine, and Th17 pathway in psoriasis. In K5.hTGF-β1 transgenic mice, exhibiting a psoriasis-like phenotype, we found increased IL-9R and IL-9 expression in the skin and intradermal IL-9 injection induced Th17-related inflammation. IL-9 also promoted angiogenesis and VEGF and CD31 overexpression in mice in vivo and increased tube formation of human endothelial cells in vitro. Injecting anti-IL-9 antibody into K5.hTGF-β1 transgenic mice not only diminished inflammation (including skin infiltration by T cells, monocytes/macrophages, and mast cells) and angiogenesis but also delayed the psoriasis-like skin phenotype. Notably, injection of anti-psoriatic acting anti-IL-17 antibody reduced skin IL-9 mRNA and serum IL-9 protein levels in K5.hTGF-β1 transgenic mice and prevented IL-9-induced epidermal hyperplasia and inflammation of the skin of wild type mice. In addition, we observed that IL-9R expression in lesional skin from psoriasis patients was markedly higher than in healthy skin from control subjects. Moreover, IL-9 significantly enhanced IL-17A production by cultured human peripheral blood mononuclear cells or CD4+ T cells, especially in psoriasis patients. Thus, IL-9 may play a role in the development of psoriatic lesions through Th17-associated inflammation and angiogenesis.
To elucidate the molecular action of 8-methoxypsoralen plus UVA (PUVA), a standard dermatological therapy, we used K5.hTGF-β1 transgenic mice exhibiting a skin phenotype and cytokine abnormalities with strong similarities to human psoriasis. We observed that impaired function of CD4+CD25+ regulatory T cells (Tregs) and increased cytokine levels of the IL-23/Th17 pathway were responsible for the psoriatic phenotype in this mouse model. Treatment of K5.hTGF-β1 transgenic mice with PUVA suppressed the IL-23/Th17 pathway, Th1 milieu, as well as transcription factors STAT3 and orphan nuclear receptor RORγt. PUVA induced the Th2 pathway and IL-10–producing CD4+CD25+Foxp3+Tregs with disease-suppressive activity that was abolished by anti-CTLA4 mAb treatment. These findings were paralleled by macroscopic and microscopic clearance of the diseased murine skin. Anti–IL-17 mAb treatment also diminished the psoriatic phenotype of the mice. This indicated that both induced Tregs involving CTLA4 signaling and inhibition of the IL-23/Th17 axis are central for the therapeutic action of PUVA.
Platelet-activating factor (PAF), a potent biolipid mediator, is involved in a variety of cellular transduction pathways and plays a prominent role in inducing inflammation in different organs. We used K5.hTGF-β1 transgenic mice, which exhibit an inflammatory skin disorder and molecular and cytokine abnormalities with strong similarities to human psoriasis, to study the pathogenic role of PAF. We found that injecting PAF into the skin of transgenic mice led to inflammation and accelerated manifestation of the psoriatic phenotype by a local effect. In contrast, injecting mice with PAF receptor antagonist PCA-4248 lowered the PAF level (most likely by depressing an autocrine loop) and neutrophil, CD68(+) cell (monocyte/macrophage), and CD3(+) T-cell accumulation in the skin and blocked progression of the psoriasis-like phenotype. This effect of PAF blockade was specific and similar to that of psoralen-UV-A and was paralleled by a decrease in abnormally elevated mRNA and/or protein levels of T-helper type 17 cell-related cytokines IL-17A, IL-17F, IL-23, IL-12A, and IL-6 and its transcription factor signal transducer and activator of transcription 3. In contrast, PCA-4248 treatment up-regulated mRNA levels of cyclooxygenase-2 and IL-10 in dorsal skin and release of IL-10 in serum and skin. Interfering with PAF may offer the opportunity to develop novel therapeutic strategies for inflammatory psoriasis and associated comorbidities, including metabolic syndrome and atherosclerosis, in which the IL-17 axis may be involved.
Although fumaric acid esters (FAE) have a decade-long firm place in the therapeutic armamentarium for psoriasis, their pleiotropic mode of action is not yet fully understood. While most previous studies have focused on the effects of FAE on leucocytes, we have addressed their activity on macro- and microvascular endothelial cells. As detected both on mRNA and protein levels, dimethylfumarate effected a profound reduction of TNFα-induced expression of E-selectin (CD62E), ICAM-1 (CD54) and VCAM-1 (CD106) on two different endothelial cell populations in a concentration-dependent manner. This reduction of several endothelial adhesion molecules was accompanied by a dramatic diminution of both rolling and firm adhesive interactions between endothelial cells and lymphocytes in a dynamic flow chamber system. Dimethylfumarate, at a concentration of 50 μm, reduced lymphocyte rolling on endothelial cells by 85.9% (P<0.001 compared to untreated controls), and it diminished the number of adherent cells by 88% (P<0.001). In contrast, monomethylfumarate (MMF) influenced neither surface expression of adhesion molecules nor interactions between endothelial cells and lymphocytes. These observations demonstrate that endothelial cells, in addition to the known effects on leucocytes, undergo profound functional changes in response to dimethylfumarate. These changes are accompanied by severely impaired dynamic interactions with lymphocytes, which constitute the critical initial step of leucocyte recruitment to inflamed tissues in psoriasis and other TNF-related inflammatory disorders.
Dysregulated angiogenesis is a hallmark of chronic inflammatory diseases, including psoriasis, a common skin disorder that affects approximately 2% of the population. Studying both human psoriasis in 2 complementary xenotransplantation models and psoriasis-like skin lesions in transgenic mice with epidermal expression of human TGF-β1, we have demonstrated that antiangiogenic non-viral somatic gene therapy reduces the cutaneous microvasculature and alleviates chronic inflammatory skin disorders. Transient muscular expression of the recombinant disintegrin domain (RDD) of metargidin (also known as ADAM-15) by in vivo electroporation reduced cutaneous angiogenesis and vascularization in all 3 models. As demonstrated using red fluorescent protein-coupled RDD, the treatment resulted in muscular expression of the gene product and its deposition within the cutaneous hyperangiogenic connective tissue. High-resolution ultrasound revealed reduced cutaneous blood flow in vivo after electroporation with RDD but not with control plasmids. In addition, angiogenesis-and inflammation-related molecular markers, keratinocyte proliferation, epidermal thickness, and clinical disease scores were downregulated in all models. Thus, non-viral antiangiogenic gene therapy can alleviate psoriasis and may do so in other angiogenesis-related inflammatory skin disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.