Extensive global sampling and sequencing of the pandemic virus SARS-CoV-2 have enabled researchers to monitor its spread, and to identify concerning new variants. Two important determinants of variant spread are how frequently they arise within individuals, and how likely they are to be transmitted. To characterize within-host diversity and transmission we deep-sequenced 1313 clinical samples from the UK. SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high, and a narrow bottleneck at transmission. Most variants are either lost, or occasionally fixed, at the point of transmission, with minimal persistence of shared diversity - patterns which are readily observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or immune-escape variants are likely to arise infrequently, but could spread rapidly if successfully transmitted.
We report that in a cohort of 45,965 adults, who were receiving either the ChAdOx1 or the BNT162b2 SARS-CoV-2 vaccines, in those who had no prior infection with SARS-CoV-2, seroconversion rates and quantitative antibody levels after a single dose were lower in older individuals, especially in those aged >60 years. Two vaccine doses achieved high responses across all ages. Antibody levels increased more slowly and to lower levels with a single dose of ChAdOx1 compared with a single dose of BNT162b2, but waned following a single dose of BNT162b2 in older individuals. In descriptive latent class models, we identified four responder subgroups, including a ‘low responder’ group that more commonly consisted of people aged >75 years, males and individuals with long-term health conditions. Given our findings, we propose that available vaccines should be prioritized for those not previously infected and that second doses should be prioritized for individuals aged >60 years. Further data are needed to better understand the extent to which quantitative antibody responses are associated with vaccine-mediated protection.
Why some individuals develop AIDS rapidly whereas others remain healthy without treatment for many years remains a central question of HIV research. An evolutionary perspective reveals an apparent conflict between two levels of selection on the virus. On the one hand, there is rapid evolution of the virus in the host, and on the other, new observations indicate the existence of virus factors that affect the virulence of infection whose influence persists over years in infected individuals and across transmission events. Here, we review recent evidence that shows that viral genetic factors play a larger role in modulating disease severity than anticipated. We propose conceptual models that reconcile adaptive evolution at both levels of selection. Evolutionary analysis provides new insight into HIV pathogenesis.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the Nature Reviews Microbiology Review articlevirus (HIV; ~10 -4 × 10 -6 mutations per nucleotide per replication cycle), which, unlike coronaviruses, lack a 3′ exonuclease proofreading mechanism in their replication machinery 8,[10][11][12] . Insertions and deletions result from replication errors and can also generate diversity, such as the deletion at position 69-70 of the spike gene responsible for the S-gene dropout that was instrumental in detecting the SARS-CoV-2 Alpha variant, and has been reported to be associated with increased infectivity 13 .In addition to RNA replication errors, host-mediated genome editing by innate cell defence mechanisms may introduce substantial numbers of directed mutations into the SARS-CoV-2 genome, and thus may influence its evolutionary rate. Cellular mutational drivers include members of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family [14][15][16] , including APOBEC1, APOBEC3A and APOBEC3G that demonstrate editing activity for numerous DNA and RNA virus and retroviral genomes 17,18 , including SARS- . APOBEC activity has been inferred bioinformatically through observations of a substantial excess of C → U transitions over all other mutations 18,20,21 . SARS-CoV-2 genomes may also be edited by different cellular antiviral proteins (adenosine deaminases that act on RNA 1 (ADAR1)), leading to A → G mutations (and U → C mutations in opposite genomic strands) 21,22 .The potential editing-associated C → U mutations in the SARS-CoV-2 genome sequences introduce complexities to SARS-CoV-2 evolutionary genomic analysis. C → U mutations account, in part, for the strikingly high ratio of non-synonymous changes in SARS-CoV-2 genomes compared with those at synonymous sites; the mean dN/dS ratio ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.