Mountain lakes are often situated in protected natural areas, a feature that leads to their role as sentinels of global environmental change. Despite variations in latitude, mountain lakes share many features, including their location in catchments with steep topographic gradients, cold temperatures, high incident solar and ultraviolet radiation (UVR), and prolonged ice and snow cover. These characteristics, in turn, affect mountain lake ecosystem structure, diversity, and productivity. The lakes themselves are mostly small and shallow, and up until recently, have been characterized as oligotrophic. This paper provides a review and update of the growing body of research that shows that sediments in remote mountain lakes archive regional and global environmental changes, including those linked to climate change, altered biogeochemical cycles, and changes in dust composition and deposition, atmospheric fertilization, and biological manipulations. These archives provide an important record of global environmental change that pre-dates typical monitoring windows. Paleolimnological research at strategically selected lakes has increased our knowledge of interactions among multiple stressors and their synergistic effects on lake systems. Lakes from transects across steep climate (i.e., temperature and effective moisture) gradients in mountain regions show how environmental change alters lakes in close proximity, but at differing climate starting points. Such research in particular highlights the impacts of melting glaciers on mountain lakes. The addition of new proxies, including DNAbased techniques and novel stable isotopic analyses, provides a gateway to addressing novel research questions about global environmental change. Recent advances in remote sensing and continuous, high-frequency, limnological measurements will improve spatial and temporal resolution and help to add records to spatial gaps including tropical and southern latitudes.
Two radiocarbon-dated cores from small lakes located approximately 25 km north of the mapped boundary between forest-tundra and tundra provide records of postglacial vegetation change at the treeline near Yellowknife, NWT, Canada. Basal radiocarbon dates of 6180 and 7470 yr B.P. were obtained from the cores. The fossil pollen evidence suggests that the initial vegetation wasBetulatundra with a peatland component.Alnusbecame an important constituent of the pollen assemblages between 6900 and 5500 yr B.P. Both lakes record sharp increases inPiceacf.marianapollen at approximately 5000 yr B.P., suggesting the establishment of forest-tundra. By 3500 yr B.P.Picea marianaforest-tundra had withdrawn. The proportion of organic to inorganic sediment in the cores was at a maximum between 5000 and 3500 yr B.P. Tundra has dominated the region since 3500 yr B.P. In northwestern Canada, the maximum northward advance of treeline occurred between 9000 and 5000 yr B.P. The asynchrony in treeline advance in central and northwestern Canada may reflect that glacial ice persisted in the interior NWT longer than previously believed. Alternatively, the asynchronous history of the treeline may be a result of the geometric properties of the long-wave westerly disturbance that is manifest in the median summer position of the arctic front and ultimately controls the geographic location of the treeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.