Plastic production has outgrown most other manmade materials, with more than 90% being petroleum-based and nonbiodegradable. Packaging, primarily food packaging, consumes the most plastic and is the largest contributor to municipal solid waste. In addition, its dependence on crude oil feedstock makes the plastic industry unsustainable and renders plastic markets vulnerable to oil price volatility. Therefore, the development of bioalternatives to conventional plastics is now a priority of the food packaging industry. Bioplastics are polymers that are either biobased (fully or partially), or biodegradable, or both. This review aims to provide an insightful overview of the most recent research and development successes in bioplastic materials, focusing on food packaging applications. Bioplastics are compared to their conventional counterparts with respect to their mechanical, thermal, barrier, and processability properties. The gaps between bio-and conventional plastics in food packaging are elucidated. Potential avenues for improving bioplastic properties to broaden their food packaging applications are critically examined. Furthermore, two of the most controversial topics on bioplastic alternatives, sustainability assessment and their impact on the plastic waste management system, are discussed.
Rubber (cis-1,4-polyisoprene) is one of the most important polymers naturally produced by plants because it is a strategic raw material used in more than 40,000 products, including more than 400 medical devices. The sole commercial source, at present, is natural rubber harvested from the Brazilian rubber tree, Hevea brasiliensis. Primarily due to its molecular structure and high molecular weight (> 1 million daltons) this rubber has high performance properties that cannot easily be mimicked by artificially produced polymers, such as those derived from, e.g., bacterial poly-hydroxyalkanoates (PHAs). These high performance properties include resilience, elasticity, abrasion resistance, efficient heat dispersion (minimizing heat build-up under friction), and impact resistance. Medical rubber gloves need to fit well, be break-resistant, allow the wearer to retain fine tactile sensation, and provide an effective barrier against pathogens. The sum of all these characteristics cannot yet be achieved using synthetic gloves. The lack of biodiversity in natural rubber production renders continuity of supply insecure, because of the risk of crop failure, diminishing acreage, and other disadvantages outlined below. A search for alternative sources of natural rubber production has already resulted in a large number of interesting plants and prospects for immediate industrial exploitation of guayule (Parthenium argentatum) as a source of high quality latex. Metabolic engineering will permit the production of new crops designed to accumulate new types of valued isoprenoid metabolites, such as rubber and carotenoids, and new combinations extractable from the same crop. Currently, experiments are underway to genetically improve guayule rubber production strains in both quantitative and qualitative respects. Since the choice for gene activities to be introduced or changed is under debate, we have set up a complementary approach to guayule with yeast species, which may more quickly show the applicability and relevance of genes selected. Although economic considerations may prevent commercial exploitation of new rubber-producing microorganisms, transgenic yeasts and bacteria may yield intermediate or alternative (poly-)isoprenes suitable for specific applications.
The physical characteristics of rubber particles from the four rubber (cis-1,4-polyisoprene) producing species Euphorbia lactiflua Phil., Ficus elastica Roxb., Hevea brasiliensis Mull. Arg., and Parthenium argentatum Gray, were investigated using transmission electron microscopy (TEM) and electron-paramagnetic-resonance (EPR) spin labeling spectroscopy. Transmission electron microscopy showed the rubber particles to be composed of a spherical, homogeneous, core of rubber enclosed by a contiguous, electron-dense, single-track surface layer. The biochemical composition of the surface layer and its single-track TEM suggested that a monolayer biomembrane was the surface structure most compatible with the hydrophobic rubber core. The EPR spectra for a series of positional isomers of doxyl stearic acid, used to label the surface layer of the rubber particles, exhibited flexibility gradients and evidence for lipid-protein interactions for all four rubber particle types that is consistent with a biomembrane-like surface. The EPR spectra confirmed that the surface biomembrane is a monolayer. Thus, rubber particles appear similar to oil bodies in their basic architecture. The EPR spectra also provided information on protein location and degree of biomembrane penetration that correlated with the known properties of the rubber-particle-bound proteins. The monolayer biomembrane serves as an interface between the hydrophobic rubber interior and the aqueous cytosol and prevents aggregation of the particles. An unexpected observation for the probes in pure polyisoprene was evidence of an intrinsic flexibility gradient associated with the stearic acid molecule itself.
Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.