An observational account of research carried out in July-August 1999 shows that grounded iceberg and related fast-ice distributions, and periodic "break-outs" of fast ice (in winter as well as at other times), have an important impact on the size and behaviour of the Mertz Glacier polynya, East Antarctica, and a smaller polynya to the east. Analysis of satellite and in situ data shows that a semi-constant "stream" of thick broken-out fast ice and other large floes from the east extends westwards from north of the glacier terminus to form a compact barrier to the net west-northwesterly export of ice formed in the polynya. An annual fast-ice promontory to the west further narrows the outlet path. As a result of this and high ice-production rates, the polynya periodically "back-fills", significantly reducing the open-water area present. Intervening "flush-outs" by synoptic storm events clear the polynya region to some extent before it back-fills again. This cycle continued from mid-March until early October in 1999, when a significant change in the regional ice drift occurred. A preliminary comparison with data from 1998 indicates that the timing and magnitude of the processes may vary interannually. Similar morphological features were also observed in 1963 (on a declassified photoreconnaissance satellite image).
Antarctic fast ice is of key climatic and ecological importance, yet its distribution and variability are poorly understood. We present a detailed analysis of fast ice along the Adélie Land coast (East Antarctica) using satellite data from 1992 to 1999. Fast ice formation along this coastline is intimately linked to grounded iceberg distribution in waters of < 350 m depth. Considerable interannual variability occurs in areal extent and formation/break-up; the variability is related to wind direction. Distance to the fast ice edge and its extent are major determinants of emperor penguin Aptenodytes forsteri breeding success at Pointe Géologie. Of crucial importance are the frequency and duration of fast ice break-out events in the deep-water trough north-northwest of the colony. Successful penguin breeding seasons in 1993, 1998 and 1999 ([number of fledged chicks in late November / number of breeding pairs] > 75% success) coincided with lower-than-average fast ice extents and persistently short distances to nearest open water (foraging grounds), and corresponded to a strong positive phase of the Southern Annular Mode. Poor breeding seasons in 1992, 1994 and 1995 (success <15%) coincided with average to slightly higher-than-average ice extents and persistently long distances to foraging grounds. Poor-to-moderate breeding years (success ~40 to 50%), e.g. 1996 and 1997, occurred with above-average ice extents combined with fairly long distances from breeding to foraging grounds during the chick nurturing season. The overall correlation between breeding success and distance was high (r 2 = 0.89), albeit based on a limited number of years (n = 8). Substantially less fast ice was present in two Argon satellite photographs taken in August and October 1963. This coincided with a highly successful breeding season and appears to have been related to stronger and more southerly winds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.