Background Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used to manage cardiopulmonary failure refractory to conventional medical and surgical therapies. Despite advances in ECMO equipment, bleeding and thrombosis remain significant complications. While the flow rate for ECMO support is well recognized, less is known about the minimum-rate requirements and haemostasis. We investigated the relationship between different ECMO flow rates, and their effect on haemolysis and coagulation. Methods Ten ex-vivo ECMO circuits were tested using donated, < 24-h-old human whole blood, with two flow rates: high-flow at 4 L/min (normal adult cardiac output; n = 5) and low-flow at 1.5 L/min (weaning; n = 5). Serial blood samples were taken for analysis of haemolysis, von Willebrand factor (vWF) multimers by immunoblotting, rotational thromboelastometry, platelet aggregometry, flow cytometry and routine coagulation laboratory tests. Results Low-flow rates increased haemolysis after 2 h ( p = 0.02), 4 h ( p = 0.02) and 6 h ( p = 0.02) and the loss of high-molecular-weight vWF multimers ( p = 0.01), while reducing ristocetin-induced platelet aggregation ( p = 0.0002). Additionally, clot formation times were prolonged ( p = 0.006), with a corresponding decrease in maximum clot firmness ( p = 0.006). Conclusions In an ex-vivo model of ECMO, low-flow rate (1.5 L/min) altered haemostatic parameters compared to high-flow (4 L/min). Observed differences in haemolysis, ristocetin-induced platelet aggregation, high-molecular-weight vWF multimers and clot formation time suggest an increased risk of bleeding complications. Since patients are often on ECMO for protracted periods, extended-duration studies are required to characterise long-term ECMO-induced haemostatic changes.
Extracorporeal membrane oxygenation (ECMO) is used in critical care to manage patients with severe respiratory and cardiac failure. ECMO brings blood from a critically ill patient into contact with a non-endothelialized circuit which can cause clotting and bleeding simultaneously in this population. Continuous systemic anticoagulation is needed during ECMO. The membrane oxygenator, which is a critical component of the extracorporeal circuit, is prone to significant thrombus formation due to its large surface area and areas of low, turbulent, and stagnant flow. Various surface coatings, including but not limited to heparin, albumin, poly(ethylene glycol), phosphorylcholine, and poly(2-methoxyethyl acrylate), have been developed to reduce thrombus formation during ECMO. The present work provides an up-to-date overview of anti-thrombogenic surface coatings for ECMO, including both commercial coatings and those under development. The focus is placed on the coatings being developed for oxygenators. Overall, zwitterionic polymer coatings, nitric oxide (NO)-releasing coatings, and lubricant-infused coatings have attracted more attention than other coatings and showed some improvement in in vitro and in vivo anti-thrombogenic effects. However, most studies lacked standard hemocompatibility assessment and comparison studies with current clinically used coatings, either heparin coatings or nonheparin coatings. Moreover, this review identifies that further investigation on the thrombo-resistance, stability and durability of coatings under rated flow conditions and the effects of coatings on the function of oxygenators (pressure drop and gas transfer) are needed. Therefore, extensive further development is required before these new coatings can be used in the clinic.
Platelet transfusion has been reported to modulate the recipients' immune system. To date, the precise mechanism(s) driving poor patient outcomes (e.g., increased rate of mortality, morbidity, infectious complications and prolonged hospital stays) following platelet transfusion are largely undefined. To determine the potential for platelet concentrates (PC) to modulate responses of crucial immune regulatory cells, a human in vitro whole blood model of transfusion was established. Maturation and activation of human myeloid dendritic cells (mDC) and the specialized subset blood DC antigen (BDCA)3 DC were assessed following exposure to buffy-coat derived PC at day (D)2 (fresh) and D5 (date-of-expiry). In parallel, to model recipients with underlying viral or bacterial infection, polyinosinic:polycytidylic acid or lipopolysaccharide was added. Exposure to PC had less of an impact on mDC responses than BDCA3 DC responses. PC alone downregulated BDCA3 DC expression of co-stimulatory molecules CD40 and CD80. In the model of viral infection, PC downregulated expression of CD83, and in the bacterial model of infection, PC downregulated CD80, CD83, and CD86. PC alone suppressed mDC production of interleukin (IL)-8, IL-12 and tumor necrosis factor (TNF)-α and BDCA3 DC production of IL-8, IL-12, and IL-6. In the model of viral infection, production of IL-12 and interferon-gamma inducible protein (IP)-10 was reduced in both DC subsets, and IL-8 was reduced in BDCA3 DC following PC exposure. When modeling bacterial infection, PC suppressed mDC and BDCA3 DC production of IL-6 and IL-10 with a reduction in TNF-α evident in mDC. This study assessed the impact of PC "transfusion" on DC surface antigen expression and inflammatory mediator production and provided the first evidence that PC transfusion modulates blood mDC and BDCA3 DC maturation and activation, particularly in the models of infection. Results of this study suggest that patients who receive PC, particularly those with underlying infectious complications, may fail to establish an appropriate immune response precipitating poor patient outcomes.
The acute respiratory distress syndrome (ARDS) describes a heterogenous population of patients with acute severe respiratory failure. However, contemporary advances have begun to identify distinct sub‐phenotypes that exist within its broader envelope. These sub‐phenotypes have varied outcomes and respond differently to several previously studied interventions. A more precise understanding of their pathobiology and an ability to prospectively identify them, may allow for the development of precision therapies in ARDS. Historically, animal models have played a key role in translational research, although few studies have so far assessed either the ability of animal models to replicate these sub‐phenotypes or investigated the presence of sub‐phenotypes within animal models. Here, in three ovine models of ARDS, using combinations of oleic acid and intravenous, or intratracheal lipopolysaccharide, we investigated the presence of sub‐phenotypes which qualitatively resemble those found in clinical cohorts. Principal Component Analysis and partitional clustering identified two clusters, differentiated by markers of shock, inflammation, and lung injury. This study provides a first exploration of ARDS phenotypes in preclinical models and suggests a methodology for investigating this phenomenon in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.