Although exogeneous “danger” signals such as LPS can activate APC to produce a Th1 response, the nature of events initiating a Th2 response is controversial. We now show that pathogen-derived products have the capacity to induce bone marrow-derived dendritic cell cultures to acquire a phenotype that promotes the differentiation of naive CD4+ T cells toward either a Th1 or Th2 phenotype. Thus, LPS-matured dendritic cells (DC1) promote a Th1 response (increased generation of IFN-γ and reduced production of IL-4) by Ag-stimulated CD4+ T cells from the DO.11.10 transgenic mouse expressing a TCR specific for an OVA peptide (OVA323–339). In contrast, a phosphorylcholine-containing glycoprotein, ES-62, secreted by the filarial nematode, Acanthocheilonema viteae, which generates a Th2 Ab response in vivo, is found to induce the maturation of dendritic cells (DC2) with the capacity to induce Th2 responses (increased IL-4 and decreased IFN-γ). In addition, we show that the switch to either Th1 or Th2 responses is not effected by differential regulation through CD80 or CD86 and that a Th2 response is achieved in the presence of IL-12.
Filarial nematodes, parasites of vertebrates, including humans, secrete immunomodulatory molecules into the host environment. We have previously demonstrated that one such molecule, the phosphorylcholine-containing glycoprotein ES-62, acts to bias the immune response toward an anti-inflammatory/Th2 phenotype that is conducive to both worm survival and host health. For example, although ES-62 initially induces macrophages to produce low levels of IL-12 and TNF-α, exposure to the parasite product ultimately renders the cells unable to produce these cytokines in response to classic stimulators such as LPS/IFN-γ. We have investigated the possibility that a TLR is involved in the recognition of ES-62 by target cells, because phosphorylcholine, a common pathogen-associated molecular pattern, appears to be responsible for many of the immunomodulatory properties of ES-62. We now demonstrate that ES-62-mediated, low level IL-12 and TNF-α production by macrophages and dendritic cells is abrogated in MyD88 and TLR4, but not TLR2, knockout, mice implicating TLR4 in the recognition of ES-62 by these cells and MyD88 in the transduction of the resulting intracellular signals. We also show that ES-62 inhibits IL-12 induction by TLR ligands other than LPS, bacterial lipopeptide (TLR2) and CpG (TLR9), via this TLR4-dependent pathway. Surprisingly, macrophages and dendritic cells from LPS-unresponsive, TLR4-mutant C3H/HeJ mice respond normally to ES-62. This is the first report to demonstrate that modulation of cytokine responses by a pathogen product can be abrogated in cells derived from TLR4 knockout, but not C3H/HeJ mice, suggesting the existence of a novel mechanism of TLR4-mediated immunomodulation.
Objective: In countries where parasitic infections are endemic, autoimmune disease is relatively rare, leading to the hypothesis that parasite-derived immunomodulators may protect against its development. Consistent with this, we have previously demonstrated that ES-62, a 62 kDa phosphorylcholine (PC)-containing glycoprotein that is secreted by filarial nematodes, can exert antiinflammatory action in the murine collagen-induced arthritis (CIA) model and human rheumatoid arthritisderived synovial tissue cultures. As a first step to developing ES-62-based drugs, the aim of this study was to determine whether the PC-moiety of ES-62 was responsible for its anti-inflammatory actions. Methods: We compared the anti-inflammatory activity of a PC-free form of recombinant ES-62 (rES-62) and a synthetic PC-ovalbumin conjugate (OVA-PC) with that of native ES-62 in the CIA model and synovial tissues from patients with rheumatoid arthritis.
ES-62 is a phosphorylcholine (PC)-containing glycoprotein which is secreted by the rodent filarial nematode Acanthocheilonema viteae. A homologue exists in the human filarial nematode Brugia malayi and indeed PC is found attached to glycoproteins of many, if not all, filarial species. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitized humans, ES-62 is able to polyclonally activate certain protein tyrosine kinase and mitogen-activating protein kinase signal-transduction elements in B and T lymphocytes following in-vitro exposure. Although this interaction is insufficient to cause lymphocyte proliferation per se, it serves to desensitize the cells to subsequent activation of the phosphoinositide-3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways and hence also to proliferation via the antigen receptors. The active component of ES-62 appears to be PC, as the results obtained with ES-62 are broadly mimicked by PC conjugated to BSA or PC alone. Although PC can also be shown to desensitize B cells following in-vivo administration, not all cells are affected, as it is still possible to generate an antibody response. Dissection of this response indicates that it is of the Th2 type.
Modulation of macrophage/dendritic cell (DC) cytokine production by the filarial nematode phosphorylcholine (PC)-containing product, ES-62, is mediated by Toll-like receptor (TLR) 4 and signal transduction depends on the TLR adaptor MyD88. Intriguingly, comparison of TLR4 knock-out (ko) mice with TLR4 mutant C3H/HeJ mice indicates that ES-62 cytokine responses are not dependent on the Pro712 residue of TLR4, which is crucial for the response to bacterial lipopolysaccharide (LPS). Because other immunomodulatory effects of ES-62 have been attributed to PC we have now investigated, using PC conjugated to ovalbumin (PC-Ova), whether PC is responsible for the interaction of ES-62 with TLR4. PC-Ova mimicked the modulation of interleukin (IL)-12 production by ES-62 in a TLR4- and MyD88-dependent manner and as with native ES-62, PC-Ova effects were not dependent on Pro712. Furthermore, both native ES-62 and PC-Ova suppressed Akt phosphorylation, whereas neither altered the activation of p38 or Erk MAP kinases. To rule out any role for the ES-62 protein component, we tested a PC-free recombinant ES-62 (rES-62) generated in the yeast Pichia pastoris. Surprisingly, rES-62 also modulated IL-12 production, but in a TLR4/MyD88-independent manner. Furthermore, rES-62 strongly activated both the p38 and Erk MAP kinases and Akt. However, recent biophysical analysis suggests there are differences in folding/shape between native and rES-62 and hence data obtained with the latter should be treated with caution. Nevertheless, although our study indicates that PC is likely to be primarily responsible for the modulation of cytokine production observed with native ES-62, an immunomodulatory role for the protein component cannot be ruled out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.