The lactic acid bacterium Streptococcus thermophilus is widely used for the manufacture of yogurt and cheese. This dairy species of major economic importance is phylogenetically close to pathogenic streptococci, raising the possibility that it has a potential for virulence. Here we report the genome sequences of two yogurt strains of S. thermophilus . We found a striking level of gene decay (10% pseudogenes) in both microorganisms. Many genes involved in carbon utilization are nonfunctional, in line with the paucity of carbon sources in milk. Notably, most streptococcal virulence-related genes that are not involved in basic cellular processes are either inactivated or absent in the dairy streptococcus. Adaptation to the constant milk environment appears to have resulted in the stabilization of the genome structure. We conclude that S. thermophilus has evolved mainly through loss-of-function events that remarkably mirror the environment of the dairy niche resulting in a severely diminished pathogenic potential. Supplementary information The online version of this article (doi:10.1038/nbt1034) contains supplementary material, which is available to authorized users.
Summary HF2 is a haloarchaeal virus infecting twoHalorubrum species (Family Halobacteriaceae). It is lytic, has a head-and-tail morphology and belongs to the Myoviridae (contractile tails). The linear double-stranded DNA genome was sequenced and found to be 77 670 bp in length, with a mol% G+C of 55.8. A total of 121 likely open reading frames (ORFs) were identified, of which 37 overlapped at start and stop codons. The predicted proteins were usually acidic (average pI of 4.8), and less than about 12% of them had homologues in the sequence databases. Four complete tRNA-like sequences (tRNA-Arg, -Asx, -Pro and -Tyr) and an incomplete tRNA-Thr were detected. A transcription map showed that most of the genome was transcribed and that the synthesis of transcripts occurred in a highly organized and reproducible pattern over a 5 h infection cycle. Transcripts often spanned multiple ORFs, suggesting that viral genes were organized into operons. The predicted ORF and observed transcript directions matched well and showed that transcription is mainly directed inwards from the genome termini, meeting at about 45-48 kb, and this was also a turning point in a cumulative GCskew plot. The low point in cumulative GC-skew, near the left end, was a region rich in short repeats and lacking ORFs, which is likely to be an origin of replication. The HF2 genome is a mosaic of components from widely different sources, demonstrating clearly that viruses of haloarchaea, like their bacteriophage counterparts, are vectors for the exchange and trans-
Aims/hypothesis: To investigate the longitudinal relationship between the gut microbiome, circulating short chain fatty acids (SCFAs) and intestinal permeability in children with islet autoimmunity or type 1 diabetes and controls. Methods:We analyzed the gut bacterial microbiome, plasma SCFAs, small intestinal permeability and dietary intake in 47 children with islet autoimmunity or recentonset type 1 diabetes and in 41 unrelated or sibling controls over a median (range) of 13 (2-34) months follow-up.Results: Children with multiple islet autoantibodies (≥2 IA) or type 1 diabetes had gut microbiome dysbiosis. Anti-inflammatory Prevotella and Butyricimonas genera were less abundant and these changes were not explained by differences in diet. Small intestinal permeability measured by blood lactulose:rhamnose ratio was higher in type 1 diabetes. Children with ≥2 IA who progressed to type 1 diabetes (progressors), compared to those who did not progress, had higher intestinal permeability (mean [SE] difference +5.14 [2.0], 95% confidence interval [CI] 1.21, 9.07, P = .006), lower within-sample (alpha) microbial diversity (31.3 [11.2], 95% CI 9.3, 53.3, P = .005), and lower abundance of SCFA-producing bacteria. Alpha diversity (observed richness) correlated with plasma acetate levels in all groups combined (regression coefficient [SE] 0.57 [0.21], 95% CI 0.15, 0.99 P = .008). Conclusions/Interpretation: Children with ≥2 IA who progress to diabetes, like those with recent-onset diabetes, have gut microbiome dysbiosis associated with increased intestinal permeability. Interventions that expand gut microbial diversity, in particular ABBREVIATIONS: ACAES, Australian child and adolescent eating survey; CSS, cumulative sum scaling; IA, islet autoantibody; IAA, insulin autoantibody; IA2, tyrosine phosphatase-like insulinoma antigen; GAD, glutamic acid decarboxylase 65; PCoA, principal coordinates analysis; SCFA, short chain fatty acid; SNP, single nucleotide polymorphism; TGAb, transglutaminase autoantibody.
SignificanceInflammation is a protective response of the body’s immune system against harmful stimuli such as pathogenic microorganisms, toxins, or damaged cells. However, if excessive or prolonged, inflammation may be harmful and therefore has to be regulated. Soluble CD52 is a natural sialoglycopeptide and immune regulator that suppresses inflammatory responses. We elucidated the mechanism of this effect by showing that soluble CD52 first sequesters a mediator of inflammation called HMGB1; in turn, this promotes binding of the sialylated CD52 glycan to an inhibitory receptor, sialic acid-binding immunoglobulin-like lectin (Siglec)-10, present on activated T cells and other immune cells. This concerted antiinflammatory mechanism driven by soluble CD52 may contribute to immune-inflammatory homeostasis and underscores the therapeutic potential of soluble CD52.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.