Resistance was not associated with oseltamivir use or more severe disease.
Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N-and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G؉C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.Enterococci are common inhabitants of the gastrointestinal tracts of humans and animals, and although they have been recognized as pathogens able to cause endocarditis, they were generally considered second-rate pathogens. Recent estimates, however, indicate that enterococci are now among the leading causes of nosocomial infections (57). Of all enterococcal species, Enterococcus faecalis accounted for the most infections in humans (26). However, during the past decade, the incidence of bloodstream infections caused by Enterococcus faecium increased, an increase which has been linked to the emergence of antibiotic resistance in this species (26,40).Little is known about virulence determinants in E. faecium (20). Recently, however, three potential virulence genes, esp, hyl, and acm, have been described for E. faecium. They were all found more frequently in clinical isolates than in fecal isolates or nonhuman isolates (13,41,44,65).Of these three putative virulence genes, only the esp gene is also found in E. faecalis (51). The Esp protein in E. faecalis is expressed as a large surface-exposed protein with a molecular mass of approximately 202 kDa. In E. faecalis, Esp is thought to be an adhesin contributing to colonization of urinary tract epithelial cells and biofilm formation (50, 59). Although detailed experimental evidence is not yet available, the higher prevalence of the E. faecium esp gene in clinical isolates suggests a role of Esp in the pathogenesis of E. faeci...
Background: Human hepatitis E virus (HEV) infections are considered an emerging disease in industrialized countries. In the Netherlands, Hepatitis E virus (HEV) infections have been associated with travel to high-endemic countries. Non-travel related HEV of genotype 3 has been diagnosed occasionally since 2000. A high homology of HEV from humans and pigs suggests zoonotic transmission but direct molecular and epidemiological links have yet to be established. We conducted a descriptive case series to generate hypotheses about possible risk factors for nontravel related HEV infections and to map the genetic diversity of HEV.
Avoparcin was used as a feed additive in Norwegian broiler and turkey production from 1986 until 1995. It was banned due to the selection of VanA‐type vancomycin‐resistant enterococci (VRE) in animal husbandry and to reduce the potential for human exposure to VRE. The aim of the present study was to investigate the prevalence of VRE carriage in Norwegian poultry farmers and their poultry three years after avoparcin was banned. Corresponding faecal samples from poultry and humans on farms where avoparcin had previously been used (exposed farms, n = 73) and farms where avoparcin had never been used (unexposed farms, n = 74) were analysed for the presence of VRE. For each farm, one sample from the poultry house and one sample from the farmer were obtained. VRE were isolated from 72 of 73 (99%) and eight of 74 (11%) poultry samples from exposed and unexposed farms, respectively. VRE were isolated from 13 of 73 (18%) and one of 74 (1%) farmer samples from exposed and unexposed farms, respectively. All VRE isolates were highly resistant to vancomycin and possessed the vanA gene, as shown by PCR. The high prevalence of VRE is in accordance with previous Norwegian studies, and shows a remarkable stability of the VanA resistance determinant in an apparently non‐selective environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.