In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry).
A central goal in ecology is to develop theories that explain the diversity and distribution of species. The evolutionary history of species and their functional traits may provide mechanistic links between community assembly and the environment. Such links may be hierarchically structured such that the strength of environmental filtering decreases in a step‐wise manner from regional conditions through landscape heterogeneity to local habitat conditions. We sampled the wild bee species assemblages in power‐line strips transecting forests in south‐eastern Norway. We used altitude, landscape diversity surrounding sites and plant species composition, together with total plant cover as proxies for regional, landscape and local environmental filters, respectively. The species richness and abundance of wild bees decreased with altitude. The reduction in species richness and abundance was accompanied by a phylogenetic clustering of wild bee individuals. Furthermore, regional filters followed by local filters best explained the structure of the functional species composition. Sites at high altitudes and sites with Ericaceae‐dominated plant communities tended to have larger bees and a higher proportion of social and spring‐emerging bees. When Bombus species were excluded from the analysis, the proportion of pollen specialists increased with the dominance of Ericaceae. Furthermore, we also found that the taxonomic, phylogenetic and functional compositional turnover between sites was higher in the northern region than in the southern part of the study region. Altogether, these results suggest that regional filters drive the species richness and abundance in trait‐groups whereas local filters have more descrete sorting effects.
We conclude that the model of multi‐level environmental filters provides a good conceptual model for community ecology. We suggest that future studies should focus on the relationship between the biogeographical history of species and their current distribution, and on the assumption that closely related species do indeed compete more intensely than distantly related species.
Many prey species select bed sites that reduce the risk of being caught off guard. We investigated bed sites used by an apex predator (gray wolf, Canis lupus) before and after individuals were approached by humans (N048 trials). On 9 out of 10 days, the unprovoked wolves rested at sites high in the terrain with a good overview (overlooking sites). After being approached, they resettled on more concealed sites lower in the terrain. Solitary yearlings used less overlooking sites than adults both before and after disturbance. The study provides experimental evidence that wolves' behavioural response to approaching humans is analogous to predator avoidance in prey species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.