Human bone marrow mesenchymal stem cells (hMSCs) represent an appealing source of adult stem cells for cell therapy and tissue engineering, as they are easily obtained and expanded while maintaining their multilineage differentiation potential. All current protocols for in vitro culture of hMSCs include fetal bovine serum (FBS) as nutritional supplement. FBS is an undesirable additive to cells that are expanded for therapeutic purposes in humans because the use of FBS carries the risk of transmitting viral and prion diseases and proteins that may initiate xenogeneic immune responses. In the present study, we have therefore investigated if autologous serum (AS) or allogeneic human serum (alloHS) could replace FBS for the expansion of hMSCs in vitro. We discovered that the choice of serum affected hMSCs at several different levels.First, hMSCs in AS proliferated markedly faster than hMSCs in FBS, whereas use of alloHS resulted in hMSC growth arrest and death. Second, hMSCs in FBS differentiated more rapidly toward mesenchymal lineages compared with hMSCs in AS. Interestingly, genome-wide microarray analysis identified several transcripts involved in cell cycle and differentiation that were differentially regulated between hMSCs in FBS and AS. Finally, several transcripts, including some involved in cell cycle inhibition, were upregulated in hMSCs in FBS at a late passage, whereas the hMSC transcriptome in AS was remarkably stable. Thus, hMSCs may be expanded rapidly and with stable gene expression in AS in the absence of growth factors, whereas FBS induces a more differentiated and less stable transcriptional profile. Stem Cells 2005;23:1357-1366
Stromal stem cells proliferate in vitro and may be differentiated along several lineages. Freshly isolated, these cells have been too few or insufficiently pure to be thoroughly characterized. Here, we have isolated two populations of CD45-CD34+CD105+ cells from human adipose tissue which could be separated based on expression of CD31. Compared with CD31+ cells, CD31- cells overexpressed transcripts associated with cell cycle quiescence and stemness, and transcripts involved in the biology of cartilage, bone, fat, muscle, and neural tissues. In contrast, CD31+ cells overexpressed transcripts associated with endothelium and the major histocompatibility complex class II complex. Clones of CD31- cells could be expanded in vitro and differentiated into cells with characteristics of bone, fat, and neural-like tissue. On culture, transcripts associated with cell cycle quiescence, stemness, certain cytokines and organ specific genes were down-regulated, whereas transcripts associated with signal transduction, cell adhesion, and cytoskeletal +CD105+CD31- cells from human adipose tissue have stromal stem cell properties which may make them useful for tissue engineering.
Androgens are critical in the development and maintenance of the male reproductive system and important in the progression of prostate cancer. The effects of androgens are mediated through the androgen receptor (AR), which is a ligand-modulated transcription factor that belongs to the nuclear receptor superfamily. In addition to its ability to activate transcription from androgen response elements, AR can inhibit activator protein-1 (AP-1) activity, composed of Jun and Fos oncoproteins, in a ligand-dependent manner. Conversely, when activated, AP-1 can block AR activity. We found that CREB (cAMP response element-binding protein) binding protein (CBP) had a direct role in both of these activities of AR. CBP significantly increased the ability of endogenous AR in LNCaP cells to activate transcription from an AR-dependent reporter construct. On the other hand, repression of AR activity by treatment of LNCaP cells with an activator of AP-1 was largely relieved when CBP was ectopically expressed. AR and CBP can physically interact in vitro as was shown in glutathione S-transferase pulldown assays. Whereas both the N terminus and ligand-binding domain of AR can interact with CBP, a short region in the N terminus of CBP is required for these interactions. As opposed to the interaction of CBP with other nuclear receptors studied so far, CBP-AR interactions were not affected by ligand binding to AR in vitro. These data suggest that CBP is a coactivator for AR in vivo and that the transcriptional interference between AR and AP-1 is the result of competition for limiting amounts of CBP in the cell.Androgens have a pivotal role in the development and maintenance of the male reproductive system (1, 2). The actions of androgens are mediated through an intracellular receptor, the androgen receptor (AR), 1 which belongs to the nuclear receptor superfamily (3, 4). Nuclear receptors are ligand-activated transcription factors that possess highly conserved DNA-binding domains and moderately conserved ligand-binding domains (LBDs), whereas they are quite divergent in the N-terminal domain (NTD) (for reviews, see Refs. 3 and 4). Transactivation function of nuclear receptors is primarily mediated by sequences in both the NTD and a short region in the LBD, referred to as the activator function-1 (AF-1) and AF-2 domains, respectively. Recent studies suggest that an interaction between the NTD and the LBD may play a role in the transcriptional activities of some nuclear receptors, including AR (5-7).The activity of nuclear receptors is modulated by interactions with other proteins. These could be mediated through heterodimeric interactions within the nuclear receptor family, such as those between retinoid X receptors and thyroid hormone, retinoic acid, and vitamin D receptors in which the heterodimer has an increased ability to activate transcription (for a review, see Ref. 8). On the other hand, activator protein-1 (AP-1) complexes, composed of either Jun homodimers or JunFos heterodimers (for a review, see Ref. 9), interfere with ligan...
Background:To ensure rapid access to new potentially beneficial health technologies, obtain best value for money, and ensure affordability, healthcare payers are adopting a range of innovative reimbursement approaches that may be called Managed Entry Agreements (MEAs). Methods: The Health Technology Assessment International (HTAi) Policy Forum sought to identify why MEAs might be used, issues associated with implementation and develop principles for their use. A 2-day deliberative workshop discussed key papers, members' experiences, and collectively addressed four policy questions that resulted in this study. Results: MEAs are used to give access to new technologies where traditional reimbursement is deemed inappropriate. Three different forms of MEAs have been identified: management of budget impact, management of uncertainty relating to clinical and/or cost-effectiveness, and management of utilization to optimize performance. The rationale for using these approaches and their advantages and disadvantages differ. However, all forms of MEA should take the form of a formal written agreement among stakeholders, clearly identifying the rationale for the agreement, aspects to be assessed, methods of data collection and review, and the criteria for ending the agreement. Conclusions: MEAs should only be used when HTA identifies issues or concerns about key outcomes and/or costs and/or organizational/budget impacts that are material to a reimbursement decision. They provide patient access and can be useful to manage technology diffusion and optimize use. However, they are administratively complex and may be difficult to negotiate and their effectiveness has yet to be evaluated.
Human mesenchymal stem cells (MSC) are popular candidates for tissue engineering. MSC are defined by their properties in two-dimensional (2D) culture systems. Cells in 2D are known to differ from their in vivo counterparts in cell shape, proliferation, and gene expression. Little is so far known about the phenotype and gene expression of cells in three-dimensional (3D) culture systems. To begin to unravel the impact of 3D versus 2D culture conditions on MSC, we have established MSC from adipose tissue and bone marrow in 3D cultures in alginate beads covalently modified with the tripeptide arginine-glycine-aspartic acid (RGD), the integrin-binding motif found in several molecules within the extracellular matrix. The MSC changed from their fibroblastoid shape (2D) to a small, compact shape when embedded in RGD alginate (3D). High viability was maintained throughout the experiment. The MSC retained expression of integrins known to bind RGD, and practically ceased to proliferate. Microarray analysis revealed that the gene expression in cells in RGD alginate was different both from the cells cultured in 2D and from prospectively isolated, uncultured MSC, but more similar to 2D cells. As alginate may be entirely dissolved, leaving the cells as single cell suspensions for various analyses, this represents a useful model for the study of cells in 3D cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.