4D-MRI is becoming increasingly important for daily guidance of thoracic and abdominal radiotherapy. This study exploits the simultaneous multi-slice (SMS) technique to accelerate the acquisition of a balanced turbo field echo (bTFE) and a turbo spin echo (TSE) coronal 4D-MRI sequence performed on 1.5 T MRI scanners. SMS single-shot bTFE and TSE sequences were developed to acquire a stack of 52 coronal 2D images over 30 dynamics. Simultaneously excited slices were separated by half the field of view. Slices intersecting with the liver-lung interface were used as navigator slices. For each navigator slice location, an end-exhale dynamic was automatically identified, and used to derive the self-sorting signal by rigidly registering the remaining dynamics. Navigator slices were sorted into 10 amplitude bins, and the temporal relationship of simultaneously excited slices was used to generate sorted 4D-MRIs for 12 healthy volunteers. The self-sorting signal was validated using an in vivo peak-to-peak motion analysis. The smoothness of the liver-lung interface was quantified by comparing to sagittal cine images acquired directly after the SMS-4D-MRI sequence. To ensure compatibility with the MR-linac radiotherapy workflow, the 4D-MRIs were transformed into 3D mid-position (MidP) images using deformable image registration. Consistency of the deformable vector fields was quantified in terms of the distance discordance metric (DDM) in the body. The SMS-4D-TSE sequence was additionally acquired for 3 lung cancer patients to investigate tumor visibility. SMS-4D-MRI acquisition and processing took approximately 7 min. 4D-MRI reconstruction was possible for 26 out of 27 acquired datasets. Missing data in the sorted 4D-MRIs varied from 4%–26% for the volunteers and varied from 8%–24% for the patients. Peak-to-peak (SD) amplitudes analysis agreed within 1.8 (1.1) mm and 0.9 (0.4) mm between the sorted 4D-MRIs and the self-sorting signals of the volunteers and patients, respectively. Liver-lung interface smoothness was found to be in the range of 0.6–3.1 mm for volunteers. The percentage of DDM values smaller than 2 mm was in the range of 85%–89% and 86%–92% for the volunteers and patients, respectively. Lung tumors were clearly visibility in the SMS-4D-TSE images and MidP images. Two fast SMS-accelerated 4D-MRI sequences were developed resulting in T2/T1 or T2 weighted contrast. The SMS-4D-MRIs and derived 3D MidP-MRIs yielded anatomically plausible images and good tumor visibility. SMS-4D-MRI is therefore a strong candidate to be used for treatment simulation and daily guidance of thoracic and abdominal MR-guided radiotherapy.
Purpose Respiratory motion management is important in abdominothoracic radiotherapy. Fast imaging of the tumor can facilitate multileaf collimator (MLC) tracking that allows for smaller treatment margins, while repeatedly imaging the full field‐of‐view is necessary for 4D dose accumulation. This study introduces a hybrid 2D/4D‐MRI methodology that can be used for simultaneous MLC tracking and dose accumulation on a 1.5 T Unity MR‐linac (Elekta AB, Stockholm, Sweden). Methods We developed a hybrid 2D/4D‐MRI methodology that uses a simultaneous multislice (SMS) accelerated MRI sequence, which acquires two coronal slices simultaneously and repeatedly cycles through slice positions over the image volume. As a result, the fast 2D imaging can be used prospectively for MLC tracking and the SMS slices can be sorted retrospectively into respiratory‐correlated 4D‐MRIs for dose accumulation. Data were acquired in five healthy volunteers with an SMS‐bTFE and SMS‐TSE MRI sequence. For each sequence, a prebeam dataset and a beam‐on dataset were acquired simulating the two phases of MR‐linac treatments. Prebeam data were used to generate a 4D‐based motion model and a reference mid‐position volume, while beam‐on data were used for real‐time motion extraction and reconstruction of beam‐on 4D‐MRIs. In addition, an in‐silico computational phantom was used for validation of the hybrid 2D/4D‐MRI methodology. MLC tracking experiments were performed with the developed methodology, for which real‐time SMS data reconstruction was enabled on the scanner. A 15‐beam 8× 7.5 Gy intensity‐modulated radiotherapy plan for lung stereotactic body radiotherapy with isotropic 3 mm GTV‐to‐PTV margins was created. Dosimetry experiments were performed using a 4D motion phantom. The latency between target motion and updating the radiation beam was determined and compensated. Local gamma analyses were performed to quantify dose differences compared to a static reference delivery, and dose area histograms (DAHs) were used to quantify the GTV and PTV coverage. Results In‐vivo data acquisition and MLC tracking experiments were successfully performed with the developed hybrid 2D/4D‐MRI methodology. Real‐time liver–lung interface motion estimation had a Pearson's correlation of 0.996 (in‐vivo) and 0.998 (in‐silico). A median (5th–95th percentile) error of 0.0 (−0.9 to 0.7) mm and 0.0 (−0.2 to 0.2) mm was found for real‐time motion estimation for in‐vivo and in‐silico, respectively. Target motion prediction beyond the liver–lung interface had a median root mean square error of 1.6 mm (in‐vivo) and 0.5 mm (in‐silico). Beam‐on 4D MRI reconstruction required a median amount of data equal to an acquisition time of 2:21–3:17 min, which was 20% less data compared to the prebeam‐derived 4D‐MRI. System latency was reduced from 501 ± 12 ms to −1 ± 3 ms (SMS‐TSE) and from 398 ± 10 ms to −10 ± 4 ms (SMS‐bTFE) by a linear regression prediction filter. The local gamma analysis agreed within −3.8%$-3.8\%$ to 3.3% (SMS‐bTFE) and −5.3%$-5.3\%$ to 10% (SMS‐TSE) with a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.