Risk analysis is an essential methodology for cybersecurity as it allows organizations to deal with cyber threats potentially affecting them, prioritize the defense of their assets, and decide what security controls should be implemented. Many risk analysis methods are present in cybersecurity models, compliance frameworks, and international standards. However, most of them employ risk matrices, which suffer shortcomings that may lead to suboptimal resource allocations. We propose a comprehensive framework for cybersecurity risk analysis, covering the presence of both intentional and nonintentional threats and the use of insurance as part of the security portfolio. A simplified case study illustrates the proposed framework, serving as template for more complex problems.
Tabular and graphical representations are used to communicate security risk assessments for IT systems. However, there is no consensus on which type of representation better supports the comprehension of risks (such as the relationships between threats, vulnerabilities and security controls). Cognitive fit theory predicts that spatial relationships should be better captured by graphs. In this paper we report the results of two studies performed in two countries with 69 and 83 participants respectively, in which we assessed the effectiveness of tabular and graphical representations with respect to extraction correct information about security risks. The experimental results show that tabular risk models are more effective than the graphical ones with respect to simple comprehension tasks and in some cases are more effective for complex comprehension tasks. We explain our findings by proposing a simple extension of Vessey's cognitive fit theory as some linear spatial relationships could be also captured by tabular models.
Abstract[Background] Security risk assessment methods in industry mostly use a tabular notation to represent the assessment results whilst academic works advocate graphical methods. Experiments with MSc students showed that the tabular notation is better than an iconic graphical notation for the comprehension of security risks.[Aim] We investigate whether the availability of textual labels and terse UML-style notation could improve comprehensibility. [Method] We report the results of an online comprehensibility experiment involving 61 professionals with an average of 9 years of working experience, in which we compared the ability to comprehend security risk assessments represented in tabular, UML-style with textual labels, and iconic graphical modeling notations.[Results] Tabular notation are still the most comprehensible notion in both recall and precision. However, the presence of textual labels does improve the precision and recall of participants over iconic graphical models.[Conclusion] Tabular representation better supports extraction of correct information of both simple and complex comprehensibility questions about security risks than the graphical notation but textual labels help.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.