For anti-icing, supercooled water should be removed before frozen onto the contact surface. We use a hydrophobic coating for anti-icing and introduce the static- and dynamic-evaluation methods. The methods describe the contact surface between the hydrophobic surface and a supercooled-water droplet. The former is based on the contact angle, and the latter is based on the sliding angle. The temperature factor is included in these models to evaluate the hydrophobic coating under the supercooled conditions. Four hydrophobic coatings are experimentally evaluated based on the static- and dynamic evaluation methods: C1-C3 (commercial fluorocarbon coatings), and Jaxa coating (original fluorocarbon coating). These are evaluated under the supercooled conditions of -10 to 0 °C. The static-evaluation shows variations in the temperature. However, change in the contact angle by the temperature is relatively small compared to that of the sliding angle for the dynamic evaluation. Only C3 and Jaxa coatings are tolerant to the sliding angle under the supercooled conditions tested. The dynamic evaluation shows that even if the coating is hydrophobic, the dynamic evaluation should be included to understand the characteristic of removal for a supercooled-water droplet.
In-flight icing for aircraft is a large concern for all those involved in aircraft operations. Generally, an electric heater has been used to prevent in-flight icing. A hybrid anti-icing system combining ice-phobic coating and electrothermal heating (ICE-WIPS) has been proposed by the Japan Aerospace Exploration Agency (JAXA) to reduce the power consumption in the heating unit. In order to validate the effectiveness of ICE-WIPS, validation and demonstration tests are conducted using icing wind tunnels at the Kanagawa Institute of Technology (KAIT) and at the Icing Research Tunnel in the NASA Glenn Research Center. Using a NACA0012 airfoil as a test model, ICE-WIPS demonstrates substantial reduction in power consumption as compared to the existing heating system. The reduction depends on the in-flight icing conditions; more than a 70% reduction is achieved at a liquid-water content (LWC) of 0.6 g/m3 and a median-volume diameter (MVD) of 15 μm at 75 m/s with zero angle of attack. In wet-icing conditions, more than a 30% reduction in power is achieved.
Polytetrafluoroethylene (PTFE) chemically repels water droplets due to the nature of fluorine substituents. This paper presents an experimental study on the impact of PTFE particle size and temperature on the hydrophobicity of a surface. The present study analyzes hydrophobicity due to both the chemical properties of PTFE and the microstructure created by PTFE particles. Herein, studies of the contact angle and the sliding angle of these surfaces are described in supercooled-water conditions ranging from −10 to 0 °C. From the equations governing the surface tension and sliding angle of a droplet on a superhydrophobic surface, it is found that particle size has a much greater effect on hydrophobicity than temperature. An increase in the PTFE particle size greatly reduces the sliding angle, which indicates a lower amount of energy required to remove the droplet from the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.