Because coal does not conduct electricity and graphite is costly and inert, little attention has been given to the development of a carbon fuel cell (i.e., a battery that utilizes a consumable carbon anode to generate electrical power). In this work we show that a packed bed of carbonized charcoal particles subject to a compressive pressure (ca. 8 MPa) can be a good electrical conductor (σ < 0.2 Ω‚cm). Low electrical resistivities σ are manifest by many different charcoals after carbonization at a heat treatment temperature (HTT) of 950 °C. The 5 orders of magnitude decrease in the electrical resistivity of charcoal with increasing HTT from 650 to 1050 °C is not associated with any dramatic change in the carbons' X-ray diffraction spectrum, its Fourier transform infrared spectrum, or its elemental analysis. Our findings cause us to visualize carbonized charcoal to be a macromolecular, cross-linked, three-dimensional, aromatic structure replete with conjugation and π bonds that facilitate the movement of electrons, as well as nanopores, and micromolecular cracks. Because charcoal powder is competitive in price with fossil fuels and because carbonized charcoal is extremely reactive with a volumetric energy density (in a compacted packed bed) comparable to conventional liquid fuels, compact packed beds of carbonized charcoal hold promise for use as electrodes and consumable anodes in fuel cells. The packed-bed apparatus we describe is a prototype anode for use in a biocarbon fuel cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.