Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.
Aging of oocytes, being not fertilized after ovulation for a prolonged time, considerably affects normal development of the fertilized oocyte. We examined effects of the aging on a series of highly repetitive Ca2+ transients commonly seen in fertilized mouse oocytes (Ca2+ oscillations). Frequency of Ca2+ oscillations in the aged oocyte [20 hrs after induction of superovulation by i.p. human chorionic gonadotropin (hCG)] was significantly higher (34.1 ± 5.8 1/hr) than the fresh oocyte (14 hr post‐hCG, 21.8 ± 7.9 1/hr). Rates of rise and fall of individual Ca2+ transient in the aged oocyte were significantly slower than the fresh oocyte, whereas durations of individual Ca2+ transients were similar. When extracellular Ca2+ was raised from 2.04 mM to 5.00 mM, aged oocytes showed significant prolongation of the duration of individual Ca2+ transient, that resulted in a sustained elevation of intracellular Ca2+ ([Ca2+]i) in 33% of the aged oocyte. Transient increase in [Ca2+]i by photolysis of a caged Ca2+, Nitr‐5, injected into cytoplasm was completely restored in the fresh oocyte [fluorescence intensity of [Ca2+]i indicator dye Fluo‐3 (F480) returned to 97 ± 2% of the control level, time constant = 37 ± 9 sec]. In contrast, in the aged oocyte, restoration of F480 following Nitr‐5 photolysis was incomplete (115 ± 12% of the control) and slow (time constant = 64 ± 23 sec). Because inhibition of the Ca2+ pump of the endoplasmic reticulum (ER) by 5 μM thapsigargin almost completely inhibited restoration of F480 following Nitr‐5 photolysis in the fresh oocyte, we conclude that the aging‐related changes in Ca2+ oscillations may be accounted for by dysfunction of intracellular Ca2+ regulation, presumably of the Ca2+ pump of the ER. Mol. Reprod. Dev. 48:383–390, 1997. © 1997 Wiley‐Liss, Inc.
An intracellular mechanism that senses decreases in tissue oxygen level and stimulates hypoxia-related gene expression has been reported in various cell types including the cardiac cell. The mechanism can also be activated by Co(2+) in normoxia. Thus we investigated the effects of prior chronic oral CoCl(2) on mechanical functions of isolated, perfused rat hearts in hypoxia-reoxygenation. In normoxic rats, 43 days of Co(2+) administration increased hematocrit from 45 +/- 0.3% (control, n = 18) to 51 +/- 0.6% (n = 19). In hypoxia and reoxygenation, Co(2+)-pretreated hearts exhibited a significantly higher rate-pressure product (267 and 163%, respectively) and coronary flow (127 and 118%, respectively) and lower end-diastolic pressure (72 and 60%, respectively) compared with the control hearts. Although the oral Co(2+) administration significantly raised myocardial Co(2+) concentration, it did not affect mitochondrial respiration, tissue glycogen concentration, or myocardial tissue histology. The levels of vascular endothelial growth factor, aldolase-A, and glucose transporter-1 mRNA were significantly elevated in the Co(2+)-treated myocardium. We conclude that cardiac contractile functions would gain hypoxic tolerance when the endogenous cellular oxygen-sensing mechanism is activated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.