Hepatocellular carcinoma (HCC) is one of the most common cancers in Asia and Africa, where hepatitis virus infection and exposure to specific liver carcinogens are prevalent. Although inactivation of some tumor suppressor genes such as p53 and p16INK4Ahas been identified, no known oncogene is commonly activated in hepatocellular carcinomas. Here we have isolated genes overexpressed in hepatocellular carcinomas by cDNA subtractive hybridization, and identified an oncoprotein consisting of six ankyrin repeats (gankyrin). The expression of gankyrin was increased in all 34 hepatocellular carcinomas studied. Gankyrin induced anchorage-independent growth and tumorigenicity in NIH/3T3 cells. Gankyrin bound to the product of the retinoblastoma gene (RB1), increasing its phosphorylation and releasing the activity of the transcription factor E2F-1. Gankyrin accelerated the degradation of RB1 in vitro and in vivo, and was identical to or interacted with a subunit of the 26S proteasome. These results demonstrate the importance of ubiquitin-proteasome pathway in the regulation of cell growth and oncogenic transformation, and indicate that gankyrin overexpression contributes to hepatocarcinogenesis by destabilizing RB1.
In response to low ambient temperature, mammalian cells as well as microorganisms change various physiological functions, but the molecular mechanisms underlying these adaptations are just beginning to be understood. We report here the isolation of a mouse cold-inducible RNA-binding protein (cirp) cDNA and investigation of its role in cold-stress response of mammalian cells. The cirp cDNA encoded an 18-kD protein consisting of an amino-terminal RNAbinding domain and a carboxyl-terminal glycine-rich domain and exhibited structural similarity to a class of stress-induced RNA-binding proteins found in plants. Immunofluorescence microscopy showed that CIRP was localized in the nucleoplasm of BALB/3T3 mouse fibroblasts. When the culture temperature was lowered from 37 to 32°C, expression of CIRP was induced and growth of BALB/3T3 cells was impaired as compared with that at 37°C. By suppressing the induction of CIRP with antisense oligodeoxynucleotides, this impairment was alleviated, while overexpression of CIRP resulted in impaired growth at 37°C with prolongation of G1 phase of the cell cycle. These results indicate that CIRP plays an essential role in cold-induced growth suppression of mouse fibroblasts. Identification of CIRP may provide a clue to the regulatory mechanisms of cold responses in mammalian cells.
Gankyrin is an ankyrin repeat oncoprotein commonly overexpressed in hepatocellular carcinomas. Gankyrin interacts with the S6 proteasomal ATPase and accelerates the degradation of the tumor suppressor Rb. We show here that gankyrin has an antiapoptotic activity in cells exposed to DNA damaging agents. Downregulation of gankyrin induces apoptosis in cells with wild-type p53. In vitro and in vivo experiments revealed that gankyrin binds to Mdm2, facilitating p53-Mdm2 binding, and increases ubiquitylation and degradation of p53. Gankyrin also enhances Mdm2 autoubiquitylation in the absence of p53. Downregulation of gankyrin reduced amounts of Mdm2 and p53 associated with the 26S proteasome. Thus, gankyrin is a cofactor that increases the activities of Mdm2 on p53 and probably targets polyubiquitylated p53 into the 26S proteasome.
Ag recognition by T lymphocytes induces immune synapse formation and recruitment of signaling molecules into a lipid raft. Cbp/PAG is a Csk-associated membrane adapter protein exclusively localized in a lipid raft. We identified NHERF/EBP50 as a Cbp-binding molecule, which connects the membrane raft and cytoskeleton by binding to both Cbp through its PDZ domain and ezrin-radixin-moesin through the C terminus. Overexpression of Cbp reduced the mobility of the raft on the cell surface of unstimulated T cells and prevented synapse formation and subsequent T cell activation, whereas a mutant incapable of EBP50 binding restored both synapse formation and activation. These results suggest that anchoring of lipid raft to the cytoskeleton through Cbp-EBP50-ezrin-radixin-moesin assembly regulates membrane dynamism for synapse formation and T cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.