Abstract-Traditional classification algorithms, in many times, perform poorly on imbalanced data sets in which some classes are heavily outnumbered by the remaining classes. For this kind of data, minority class instances, which are usually much more of interest, are often misclassified. The paper proposes a method to deal with them by changing class distribution through oversampling at the borderline between the minority class and the majority class of the data set. A Support Vector Machines (SVMs) classifier then is trained to predict new unknown instances. Compared to other over-sampling methods, the proposed method focuses only on the minority class instances lying around the borderline due to the fact that this area is most crucial for establishing the decision boundary. Furthermore, new instances will be generated in such a manner that minority class area will be expanded further toward the side of the majority class at the places where there appear few majority class instances. Experimental results show that the proposed method can achieve better performance than some other over-sampling methods, especially with data sets having low degree of overlap due to its ability of expanding minority class area in such cases.
Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B).
Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms.
Background: There are several clinical diagnostic criteria for allergic bronchopulmonary aspergillosis (ABPA). However, these criteria have not been validated in detail, and no criteria for allergic bronchopulmonary mycosis (ABPM) are currently available. Objective: This study proposes new diagnostic criteria for ABPA/ABPM, consisting of 10 components, and compares its sensitivity and specificity to existing methods. Methods: Rosenberg-Patterson criteria proposed in 1977, the International Society for Human and Animal Mycology (ISHAM) criteria proposed in 2013, and this new criteria were applied to 79 cases with pathological ABPM and the control population with allergic mucin in the absence of fungal hyphae (n 5 37), chronic eosinophilic pneumonia (n 5 64), Aspergillussensitized severe asthma (n 5 26), or chronic pulmonary aspergillosis (n 5 24). These criteria were also applied to the 179 cases with physician-diagnosed ABPA/ABPM in a nationwide Japanese survey. Results: The sensitivity for pathological ABPM with Rosenberg-Patterson criteria, ISHAM criteria, and this new criteria were 25.3%, 77.2%, and 96.2%, respectively. The sensitivity for physician-diagnosed ABPA/ABPM were 49.2%, 82.7%, and 94.4%, respectively. The areas under the curve for the receiveroperating characteristic curves were 0.85, 0.90, and 0.98, respectively. The sensitivity for ABPM cases that were culture-positive for non-Aspergillus fungi were 13.0%, 47.8%, and 91.3%, respectively. Conclusions: The new diagnostic criteria, compared with existing criteria, showed better sensitivity and specificity for diagnosing ABPA/ABPM. (J Allergy Clin Immunol 2020;nnn:nnn-nnn.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.