The white petals of chrysanthemum (Chrysanthemum morifolium Ramat.) are believed to contain a factor that inhibits the accumulation of carotenoids. To find this factor, we performed polymerase chain reaction-Select subtraction screening and obtained a clone expressed differentially in white and yellow petals. The deduced amino acid sequence of the protein (designated CmCCD4a) encoded by the clone was highly homologous to the sequence of carotenoid cleavage dioxygenase. All the white-flowered chrysanthemum cultivars tested showed high levels of CmCCD4a transcript in their petals, whereas most of the yellow-flowered cultivars showed extremely low levels. Expression of CmCCD4a was strictly limited to flower petals and was not detected in other organs, such as the root, stem, or leaf. White petals turned yellow after the RNAi construct of CmCCD4a was introduced. These results indicate that in white petals of chrysanthemums, carotenoids are synthesized but are subsequently degraded into colorless compounds, which results in the white color.Carotenoids are 40-carbon isoprenoids with polyene chains that may contain up to 15 conjugated double bonds. More than 700 naturally occurring carotenoids have been identified (Britton et al., 2004). Carotenoids are essential for photosynthesis, and they furnish flowers and fruits with distinct colors designed to attract insects and other animals. Carotenoids also serve as precursors for the biosynthesis of the plant growth regulator abscisic acid .The chrysanthemum (Chrysanthemum morifolium Ramat.), which has been bred for more than 2,000 years, is one of the most important ornamental flowers in the world. The petal color of yellow-flowered cultivars originates mainly from carotenoids. Understanding the mechanism that controls carotenoid accumulation in petals will not only contribute greatly to the breeding of chrysanthemums and other flowering plants but also provide important information about the molecular evolutionary mechanisms responsible for different petal colors. Cultivated chrysanthemums are thought to have originated from hybrids between white-and yellow-flowered wild species. On the basis of an experiment in which white-and yellow-flowered chrysanthemums were crossed, Hattori (1991) observed that the white petal color is dominant over yellow and suggested that a single dominant gene that inhibits carotenoid accumulation may exist. The detailed function of such a gene, however, is still unknown. Kishimoto and Ohmiya (2006) demonstrated no significant difference between the expression levels of carotenoid biosynthetic genes in white and yellow petals during the course of development. In addition, the carotenoid content in immature white petals is almost equal to that in yellow petals, and the carotenoid content decreases to undetectable levels as the white petals mature. These results indicate that the formation of white color is caused neither by down-regulation nor by disruption of the carotenoid biosynthetic pathway.To find a factor that controls carotenoid content i...
Photoperiodic floral induction has had a significant impact on the agricultural and horticultural industries. Changes in day length are perceived in leaves, which synthesize systemic flowering inducers (florigens) and inhibitors (antiflorigens) that determine floral initiation at the shoot apex. Recently, FLOWERING LOCUS T (FT) was found to be a florigen; however, the identity of the corresponding antiflorigen remains to be elucidated. Here, we report the identification of an antiflorigen gene, Anti-florigenic FT/TFL1 family protein (AFT), from a wild chrysanthemum (Chrysanthemum seticuspe) whose expression is mainly induced in leaves under noninductive conditions. Gain-and loss-of-function analyses demonstrated that CsAFT acts systemically to inhibit flowering and plays a predominant role in the obligate photoperiodic response. A transient gene expression assay indicated that CsAFT inhibits flowering by directly antagonizing the flower-inductive activity of CsFTL3, a C. seticuspe ortholog of FT, through interaction with CsFDL1, a basic leucine zipper (bZIP) transcription factor FD homolog of Arabidopsis. Induction of CsAFT was triggered by the coincidence of phytochrome signals with the photosensitive phase set by the dusk signal; flowering occurred only when night length exceeded the photosensitive phase for CsAFT induction. Thus, the gated antiflorigen production system, a phytochrome-mediated response to light, determines obligate photoperiodic flowering response in chrysanthemums, which enables their year-round commercial production by artificial lighting. T he transition from the vegetative to the reproductive phase is one of the most important developmental stages in the plant life cycle. The timing of flowering during the year, which is an important adaptive trait that strongly influences reproductive fitness, is affected by both endogenous and environmental factors. Changes in day length (photoperiod) are among the most important and reliable seasonal signals to plants to reproduce at favorable times of the year. In 1920, Garner and Allard (1) demonstrated that several plant species flower in response to changes in day length and described this phenomenon as "photoperiodism." Plants are classified according to their photoperiodic responses as short-day plants (SDP), in which flowering occurs when the night length is longer than a critical minimum, long-day plants (LDP), in which flowering occurs when the day becomes longer than some crucial length, and day-neutral plants.Within the SDP and LDP, there are obligate (qualitative) and facultative (quantitative) types of photoperiodic responses. Obligate-type plants are those in which a particular photoperiod is an absolute requirement for the occurrence of a response. Chrysanthemum has become one of the most important horticultural crops since the discovery of photoperiodism because the flowering time of this obligate SDP can be strictly controlled by the use of blackouts or artificial lighting, day-length extension, or illumination during the middle of the...
Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums.
Cultivated chrysanthemum ( Chrysanthemum morifolium Ramat.) is one of the most economically important ornamental crops grown worldwide. It has a complex hexaploid genome (2 n = 6 x = 54) and large genome size. The diploid Chrysanthemum seticuspe is often used as a model of cultivated chrysanthemum, since the two species are closely related. To expand our knowledge of the cultivated chrysanthemum, we here performed de novo whole-genome assembly in C. seticuspe using the Illumina sequencing platform. XMRS10, a C. seticuspe accession developed by five generations of self-crossing from a self-compatible strain, AEV2, was used for genome sequencing. The 2.72 Gb of assembled sequences (CSE_r1.0), consisting of 354,212 scaffolds, covered 89.0% of the 3.06 Gb C. seticuspe genome estimated by k-mer analysis. The N50 length of scaffolds was 44,741 bp. For protein-encoding genes, 71,057 annotated genes were deduced (CSE_r1.1_cds). Next, based on the assembled genome sequences, we performed linkage map construction, gene discovery and comparative analyses for C. seticuspe and cultivated chrysanthemum. The generated C. seticuspe linkage map revealed skewed regions in segregation on the AEV2 genome. In gene discovery analysis, candidate flowering-related genes were newly found in CSE_r1.1_cds. Moreover, single nucleotide polymorphism identification and annotation on the C . × morifolium genome showed that the C. seticuspe genome was applicable to genetic analysis in cultivated chrysanthemums. The genome sequences assembled herein are expected to contribute to future chrysanthemum studies. In addition, our approach demonstrated the usefulness of short-read genome assembly and the importance of choosing an appropriate next genome sequencing technology based on the purpose of the post-genome analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.