Low‐temperature atmospheric pressure plasmas applied to the surface of an aqueous solution have been shown to be efficient bactericides for bacteria suspended in the solution, if the solution is sufficiently acidic. Especially of interest is the finding that there is a critical pH value of about 4.7 for the bactericidal effects, below which the bacteria are efficiently inactivated and above which the bacteria are hardly affected by the plasma application. It has been also found that the presence of superoxide anion radicals O 2−• in the solution is essential for bacterial inactivation by the plasma application. Therefore, the critical pH value may arise from the pKa of the equilibrium reaction between O 2−• and hydroperoxy radicals HOO•, which is known to be approximately 4.8. The present experiments, where plasmas are not directly applied to bacterium surfaces and it has been confirmed that neither UV light nor heat from the plasma is the cause of bacterial inactivation, suggest the importance of highly reactive species generated in the solution via plasma–liquid interaction for the bactericidal effects.
Flap endonuclease-1 (FEN1) is a key enzyme for maintaining genomic stability and replication. Proliferating cell nuclear antigen (PCNA) binds FEN1 and stimulates its endonuclease activity. The structural basis of the FEN1-PCNA interaction was revealed by the crystal structure of the complex between human FEN1 and PCNA. The main interface involves the C-terminal tail of FEN1, which forms two b-strands connected by a short helix, the bA-aA-bB motif, participating in b-b and hydrophobic interactions with PCNA. These interactions are similar to those previously observed for the p21 CIP1/WAF1 peptide. However, this structure involving the full-length enzyme has revealed additional interfaces that are involved in the core domain. The interactions at the interfaces maintain the enzyme in an inactive 'locked-down' orientation and might be utilized in rapid DNA-tracking by preserving the central hole of PCNA for sliding along the DNA. A hinge region present between the core domain and the C-terminal tail of FEN1 would play a role in switching the FEN1 orientation from an inactive to an active orientation.
Heterotrimeric GTP-binding proteins (G proteins) transmit extracellular stimuli perceived by G protein-coupled receptors (GPCRs) to intracellular signaling cascades. Hundreds of GPCRs exist in humans and are the targets of a large percentage of the pharmaceutical drugs used today. Because G proteins are regulated by GPCRs, small molecules that directly modulate G proteins have the potential to become therapeutic agents. However, strategies to develop modulators have been hampered by a lack of structural knowledge of targeting sites for specific modulator binding. Here we present the mechanism of action of the cyclic depsipeptide YM-254890, which is a recently discovered G
q
-selective inhibitor. YM-254890 specifically inhibits the GDP/GTP exchange reaction of α subunit of G
q
protein (Gα
q
) by inhibiting the GDP release from Gα
q
. X-ray crystal structure analysis of the Gα
q
βγ–YM-254890 complex shows that YM-254890 binds the hydrophobic cleft between two interdomain linkers connecting the GTPase and helical domains of the Gα
q
. The binding stabilizes an inactive GDP-bound form through direct interactions with switch I and impairs the linker flexibility. Our studies provide a novel targeting site for the development of small molecules that selectively inhibit each Gα subunit and an insight into the molecular mechanism of G protein activation.
The RecQ family of DNA helicases including WRN (Werner syndrome protein) and BLM (Bloom syndrome protein) protects the genome against deleterious changes. Here we report the cocrystal structure of the RecQ C-terminal (RQC) domain of human WRN bound to a DNA duplex. In the complex, the RQC domain specifically interacted with a blunt end of the duplex and, surprisingly, unpaired a Watson-Crick base pair in the absence of an ATPase domain. The beta wing, an extended hairpin motif that is characteristic of winged-helix motifs, was used as a "separating knife" to wedge between the first and second base pairs, whereas the recognition helix, a principal component of helix-turn-helix motifs that are usually embedded within DNA grooves, was unprecedentedly excluded from the interaction. Our results demonstrate a function of the winged-helix motif central to the helicase reaction, establishing the first structural paradigm concerning the DNA structure-specific activities of the RecQ helicases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.