This document describes the findings of the Third Workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical Methods in Natural Language Processing (EMNLP 2019). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the two shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document-level generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language.
The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2021) featured this year four shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Multilingual speech translation, (iv) Low-resource speech translation. A total of 22 teams participated in at least one of the tasks. This paper describes each shared task, data and evaluation metrics, and reports results of the received submissions.
Multi-source translation systems translate from multiple languages to a single target language. By using information from these multiple sources, these systems achieve large gains in accuracy. To train these systems, it is necessary to have corpora with parallel text in multiple sources and the target language. However, these corpora are rarely complete in practice due to the difficulty of providing human translations in all of the relevant languages. In this paper, we propose a data augmentation approach to fill such incomplete parts using multi-source neural machine translation (NMT). In our experiments, results varied over different language combinations but significant gains were observed when using a source language similar to the target language.
Multi-source translation systems translate from multiple languages to a single target language. By using information from these multiple sources, these systems achieve large gains in accuracy. To train these systems, it is necessary to have corpora with parallel text in multiple sources and the target language. However, these corpora are rarely complete in practice due to the difficulty of providing human translations in all of the relevant languages. In this paper, we propose a data augmentation approach to fill such incomplete parts using multi-source neural machine translation (NMT). In our experiments, results varied over different language combinations but significant gains were observed when using a source language similar to the target language.
This paper proposes a named entity recognition (NER) method for speech recognition results that uses confidence on automatic speech recognition (ASR) as a feature. The ASR confidence feature indicates whether each word has been correctly recognized. The NER model is trained using ASR results with named entity (NE) labels as well as the corresponding transcriptions with NE labels. In experiments using support vector machines (SVMs) and speech data from Japanese newspaper articles, the proposed method outperformed a simple application of textbased NER to ASR results in NER Fmeasure by improving precision. These results show that the proposed method is effective in NER for noisy inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.