Hepatocyte growth factor (HGF) is known to influence a number of cell types and their production of regulatory cytokines. We investigated the potential of recombinant HGF to regulate not only the development of allergic airway inflammation and airway hyperresponsiveness (AHR), but also airway remodeling in a murine model. Administration of exogenous HGF after sensitization but during ovalbumin challenge significantly prevented AHR, as well as eosinophil and lymphocyte accumulation in the airways; interleukin (IL)-4, IL-5, and IL-13 levels in bronchoalveolar lavage (BAL) fluid were also significantly reduced. Further, treatment with HGF significantly suppressed transforming growth factor-beta (TGF-beta), platelet-derived growth factor, and nerve growth factor levels in BAL fluid. The expression of TGF-beta, the development of goblet cell hyperplasia and subepithelial collagenization, and the increases in contractile elements in the lung were also reduced by recombinant HGF. Neutralization of endogenous HGF resulted in increased AHR as well as the number of eosinophils, levels of Th2 cytokines (IL-4, IL-5, and IL-13) and TGF-beta in BAL fluid. These data indicate that HGF may play an important role in the regulation of allergic airway inflammation, hyperresponsiveness, and remodeling.
Commercially pure titanium powder is subjected to mechanical milling (MM)-a severe plastic deformation process-for various periods of time. The MM powder has two different kinds of microstructure, which can be controlled by the MM conditions. They include ultra fine and coarse grain structures known as ''shell'' and ''core'', respectively. Subsequently, these MM powder is sintered using a hot roll sintering (HRS) process. The HRS materials with the shell and the core have a network structure of continuously connected shells, which is known as a harmonic structure. The HRS materials with the harmonic structure simultaneously demonstrate both high strength and elongation. These outstanding mechanical properties are influenced by the harmonic structure characteristics such as shell and core grain sizes, and shell fraction and shell network size. Thus, the harmonic structure can be considered as a remarkable design for improving the mechanical properties of commercially pure titanium as well as other metallic materials.
BackgroundChronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.MethodsBALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.ResultsMice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.ConclusionThese data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.