Nonhardened gelatin-acacia microcapsules were studied for encapsulation of microdroplets of oil solution containing a lipophilic drug as core material and ready disintegration with release of micro oil droplets in the gastrointestinal tract. Probucol and S-312-d, a Ca-channel blocker, were employed as model lipophilic drugs. Glyceryl tricaprylate and tricaprate mixture solutions containing these drugs were encapsulated according to the complex coacervation method and were recovered as free-flowing powders without any hardening (cross-linking) step. The microcapsules obtained were disintegrated, and the emulsion was reproduced within 3 min at 37 degrees C in the first or second test solution defined in the Japanese Pharmacopeia XII. When the microcapsules were stored as a powder at room temperature in a closed bottle, no significant change in their appearance or disintegration time upon rehydration was observed even after 1 year. Oral bioavailabilities of model drugs from the microcapsules were tested in rats and dogs and compared with those from other conventional formulations. Gastrointestinal absorption of both probucol and S-312-d from the microcapsules was remarkably more efficient than that from other formulations such as powders, granules, or oil solution. The proposed method for microencapsulation could be useful for powdering drug-containing oil solutions or O/W emulsions while maintaining excellent bioavailability.
The in-vivo anti-influenza-virus activity of Stachyflin derivatives (III and its phosphate ester, III-Phos), a new class of haemagglutinin fusion inhibitor, and the improvement of their absorption after oral or intranasal administration were studied in mice, rats, and ferrets. The absorption of III in PEG 4000 and III-Phos aqueous solution increased about three and four fold in AUC after oral administration to uninfected mice compared with that of 0.5% HPMC (hydroxypropyl-methylcellulose) suspension. Using a mouse influenza virus infection model, significant anti-influenza-virus activity was observed in infected mice treated orally with these compounds dissolved in PEG 4000 or distilled water, respectively, but not in mice treated with 0.5% HPMC. The in-vivo anti-influenza-virus activity in ferrets, a good model for influenza virus infection in man, was also studied. Although the concentration of III in plasma was above the IC50 against the influenza virus strain used for 6h after the oral administration of III in PEG 400 to uninfected ferrets, no in-vivo anti-influenza-virus activity was observed at the same dosage given 4 times daily for 3 days. The intranasal administration of III-Phos, which was expected to have a more notable in-vivo anti-influenza-virus activity, was examined. III-Phos, whose intranasal absorption had been improved by the modification of III with phosphate ester in rats, inhibited viral replication in the nasal cavity and suppressed influenza-virus-induced fever when administered intranasally to infected ferrets. This study demonstrates that intranasally administered compounds with anti-influenza-virus activity must permeate the nasal membranes to produce their anti-influenza-virus effect.
We have explored orally effective thyrotropin-releasing hormone (TRH) mimetics, showing oral bioavailability and brain penetration by structure–activity relationship (SAR) study on the basis of in vivo antagonistic activity on reserpine-induced hypothermia in mice. By primary screening of the synthesized TRH mimetics, we found a novel TRH mimetic: l-pyroglutamyl-[3-(thiazol-4-yl)-l-alanyl]-l-prolinamide with a high central nervous system effect compared with TRH as a lead compound. Further SAR optimization studies of this lead compound led to discovery of a novel orally effective TRH mimetic: 1-{N-[(4S,5S)-(5-methyl-2-oxooxazolidine-4-yl)carbonyl]-3-(thiazol-4-yl)-l-alanyl}-(2R)-2-methylpyrrolidine trihydrate (rovatirelin hydrate), which was selected as a candidate for clinical trials.
We discovered the orally active thyrotropin‐releasing hormone (TRH) mimetic: (4S,5S)‐5‐methyl‐N‐{(2S)‐1‐[(2R)‐2‐methylpyrrolidin‐1‐yl]‐1‐oxo‐3‐(1,3‐thiazol‐4‐yl)propan‐2‐yl}‐2‐oxo‐1,3‐oxazolidine‐4‐carboxamide 1 (rovatirelin). The central nervous system (CNS) effect of rovatirelin after intravenous (iv) administration is 100‐fold higher than that of TRH. As 1 has four asymmetric carbons in its molecule, there are 16 stereoisomers. We synthesized and evaluated the anti‐hypothermic effect of all stereoisomers of 1, which has the (4S),(5S),(2S),(2R) configuration from the N‐terminus to the C‐terminus, in order to clarify the structure−activity relationship (SAR) of stereoisomers. The (4R),(5R),(2R),(2S)‐isomer 16 did not show any anti‐hypothermic effect. Only the (4S),(5S),(2S),(2S)‐isomer 10, which has the (2S)‐2‐methylpyrrolidine moiety at the C‐terminus showed the anti‐hypothermic effect similar to 1. Stereoisomers, which have the (5R) configuration of the oxazolidinone at the N‐terminus and the (2R) configuration at the middle‐part, showed a much lower anti‐hypothermic effect than that of 1. On the other hand, stereoisomers, which have the (4R) configuration of the oxazolidinone at the N‐terminus or the (2S) configuration of the C‐terminus, have little influence on the anti‐hypothermic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.