The efficiency of vehicles and travel comfort are maintained by the effective management of road pavement conditions. Pavement conditions can be inspected at a low cost by drive-by monitoring technology. Drive-by monitoring technology is a method of collecting data from sensors installed on a running vehicle. This technique enables quick and low-cost inspections. However, most existing technologies assume that the vehicle runs at a constant speed. Therefore, this study devises a theoretical framework that estimates road unevenness without prior information about the vehicle’s mechanical parameters even when the running speed changes. This paper also shows the required function of sensors for this scheme. The required ability is to collect the three-axis acceleration vibration and position data simultaneously. A field experiment was performed to examine the applicability of sensors with both functions to the proposed methods. Each sensor was installed on a bus in service in this field experiment. The vehicle’s natural frequency estimated from the measured data ranges from 1 to 2 Hz, but the natural frequency estimated by the proposed method is 0.71 Hz. However, the estimated road unevenness does not change significantly with changes in the vehicle’s estimated parameters. The results found that the accuracy of road unevenness estimation seems to be acceptable with the conventional method and the new method. Future work will include improving the algorithm and accuracy verification of the schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.