Swordtip squid (Uroteuthis edulis), which is sometimes eaten alive (lively squid) in northwest Kyushu, Japan, is an economically important fish species in the region. However, the total catch of this species in Japan has declined by more than 80% in the last three decades. To understand and predict the spatio‐temporal distribution of fish species, we developed a one‐dimensional ecosystem (NPZD) model and a habitat suitability index (HSI) model for southwest Iki Island, northwest Kyushu, Japan. Subsequently, we conducted three numerical experiments with the HSI model, with and without the NPZD model data (with the NPZD model data: phytoplankton or zooplankton concentrations, without the NPZD model data: only the physical data of the ocean). In the HSI model with zooplankton concentrations, we found a stronger positive relationship between the HSI model values and the daily fisheries catch data of U. edulis than that using only the physical variables of the ocean as the environmental parameters. Our study thus indicates that the performance of the fishing ground prediction model will improve by utilizing the lower trophic ecosystem model such as zooplankton concentrations. Furthermore, our results would provide important implications for the efficiency of fishing operations and the conservation and management of this species.
Subtropical mode water (STMW) promotes material exchange by water mixing, through such means as turbulence or advection, and affects ecosystems in the Northwest Pacific. STMW is defined as a water mass, with potential temperature (θ) of 16°C-19°C, potential density (σ θ ) of 25-26 kg m −3 , and low potential vorticity. This water mass property is widely observed in the region of 128°-175°E and 18°-34°N in the North Pacific Subtropical
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.