Prostaglandin E 2 (PGE 2 ) and prostaglandin I 2 (PGI 2 ) are major inflammatory mediators that play important roles in pain sensation and hyperalgesia. The role of their receptors (EP and IP, respectively) in inflammation has been well documented, although the EP receptor subtypes involved in this process and the underlying cellular mechanisms remain to be elucidated. The capsaicin receptor TRPV1 is a nonselective cation channel expressed in sensory neurons and activated by various noxious stimuli. TRPV1 has been reported to be critical for inflammatory pain mediated through PKA-and PKC-dependent pathways. PGE 2 or PGI 2 increased or sensitized TRPV1 responses through EP 1 or IP receptors, respectively predominantly in a PKC-dependent manner in both HEK293 cells expressing TRPV1 and mouse DRG neurons. In the presence of PGE 2 or PGI 2 , the temperature threshold for TRPV1 activation was reduced below 35°C, so that temperatures near body temperature are sufficient to activate TRPV1.
There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (4351C) apparently via direct heatevoked channel gating. b-NAD þ -or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADPribose (cADPR) does not activate TRPM2 at 251C, coapplication of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca 2 þ and insulin release, which is K ATP channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca 2 þ entry into pancreatic b-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.