Background
α-Klotho (αKl) regulates mineral metabolism such as calcium ion (Ca2+) and inorganic phosphate (Pi) in circulation. Defects in mice result in clinical features resembling disorders found in human aging. Although the importance of transmembrane-type αKl has been demonstrated, less is known regarding the physiological importance of soluble-type αKl (sαKl) in circulation.
Objectives
The aims of this study were: 1) to establish a sandwich ELISA system enabling detection of circulating serum sαKl, and 2) to determine reference values for sαKl serum levels and relationship to indices of renal function, mineral metabolism, age and sex in healthy subjects.
Results
We successively developed an ELISA to measure serum sαKl in healthy volunteers (n=142, males 66) of ages (61.1 ± 18.5 yr). The levels (mean ± SD) in these healthy control adults were as follows: total calcium (Ca; 9.46 ± 0.41 mg/dL), Pi (3.63 ± 0.51 mg/dL), Blood urea nitrogen (BUN; 15.7 ± 4.3 mg/dL), creatinine (Cre; 0.69 ± 0.14 mg/dL), 1,25 dihydroxyvitamin D (1,25(OH)2D; 54.8 ± 17.7 pg/mL), intact parathyroid hormone (iPTH; 49.2 ± 20.6 pg/mL), calcitonin (26.0 ± 12.3 pg/mL) and intact Fibroblast growth factor (FGF23; 43.8 ± 17.6 pg/mL).
Serum levels of sαKl ranged from 239 to 1266 pg/mL (mean ± SD; 562 ± 146 pg/mL) in normal adults. Although sαKl levels were not modified by gender or indices of mineral metabolism, sαKl levels were inversely related to Cre and age. However, sαKl levels in normal children (n=39, males 23, mean ± SD; 7.1 ± 4.8 years) were significantly higher (mean ± SD; 952 ± 282 pg/mL) than those in adults (mean ± SD; 562 ± 146, P<0.001). A multivariate linear regression analysis including children and adults in this study demonstrated that sαKl correlated negatively with age and Ca, and positively with Pi. Finally, we measured a serum sαKl from a patient with severe tumoral calcinosis derived from a homozygous missense mutation of α-klotho gene. In this patient, sαKl level was notably lower than those of age matched controls.
Conclusion
We established a detection system to measure human serum sαKl for the first time. Age, Ca and Pi seem to influence serum sαKl levels in a normal population. This detection system should be an excellent tool for investigating sαKl functions in mineral metabolism.
Chronic hypoxia accelerates renal fibrosis. The chief mediator of the hypoxic response is hypoxia-inducible factor 1 (HIF-1) and its oxygen-sensitive component HIF-1alpha. HIF-1 regulates a wide variety of genes, some of which are closely associated with tissue fibrosis. To determine the specific role of HIF-1 in renal fibrosis, we generated a knockout mouse in which tubular epithelial expression of von Hippel-Lindau tumor suppressor (VHL), which acts as a ubiquitin ligase to promote proteolysis of HIF-1alpha, was targeted. We investigated the effect of VHL deletion (i.e., stable expression of HIF-1alpha) histologically and used the anti-HIF-1alpha agent [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole] (YC-1) to test whether inhibition of HIF-1alpha could represent a novel approach to treating renal fibrosis. The area of renal fibrosis was significantly increased in a 5/6 renal ablation model of VHL-/- mice and in all VHL-/- mice at least 60 wk of age. Injection of YC-1 inhibited the progression of renal fibrosis in unilateral ureteral obstruction model mice. In conclusion, HIF-1alpha appears to be a critical contributor to the progression of renal fibrosis and could be a useful target for its treatment.
Renal α-Klotho (α-KL) plays a fundamental role as a co-receptor for fibroblast growth factor 23 (FGF23), a phosphaturic hormone and regulator of 1,25(OH)2 vitamin D3 (1,25VitD3). Disruption of FGF23-α-KL signaling is thought to be an early hallmark of chronic kidney disease (CKD) involving reduced renal α-KL expression and a reciprocal rise in serum FGF23. It remains unclear, however, whether the rise in FGF23 is related to the loss of renal α-KL. We evaluated α-KL expression in renal biopsy samples and measured levels of several parameters of mineral metabolism, as well as soluble α-KL (sKL), in serum and urinary samples from CKD patients (n = 236). We found that although renal α-KL levels were significantly reduced and serum FGF23 levels were significantly elevated in early and intermediate CKD, serum phosphate levels remained within the normal range. Multiple regression analysis showed that the increases in FGF23 were significantly associated with reduced renal function and elevated serum phosphate, but were not associated with loss of renal α-KL. Moreover, despite falling renal α-KL levels, the increase in FGF23 enhanced urinary fractional excretion of phosphate and reduced serum 1,25VitD3 levels in early and intermediate CKD, though not in advanced CKD. Serum sKL levels also fell significantly over the course of CKD, and renal α-KL was a significant independent determinant of sKL. These results demonstrate that FGF23 levels rise to compensate for renal failure-related phosphate retention in early and intermediate CKD. This enables FGF23-α-KL signaling and a neutral phosphate balance to be maintained despite the reduction in α-KL. In advanced CKD, however, renal α-KL declines further. This disrupts FGF23 signaling, and serum phosphate levels significantly increase, stimulating greater FGF23 secretion. Our results also suggest the serum sKL concentration may be a useful marker of renal α-KL expression levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.