The genes encoding the catalytic domains (CD) of the three endoglucanases (EG I; Cel7B, EG II; Cel5A, and EG III; Cel12A) from Trichoderma reesei QM9414 were expressed in Escherichia coli strains Rosetta-gami B (DE3) pLacI or Origami B (DE3) pLacI and were found to produce functional intracellular proteins. Protein production by the three endoglucanase transformants was evaluated as a function of growth temperature. Maximal productivity of EG I-CD at 15 degrees C, EG II-CD at 20 degrees C and EG III at 37 degrees C resulted in yields of 6.9, 72, and 50 mg/l, respectively. The endoglucanases were purified using a simple purification method based on removing E. coli proteins by isoelectric point precipitation. Specific activity toward carboxymethyl cellulose was found to be 65, 49, and 15 U/mg for EG I-CD, EG II-CD, and EG III, respectively. EG II-CD was able to cleave 1,3-1,4-beta-D-glucan and soluble cellulose derivatives. EG III was found to be active against cellulose, 1,3-1,4-beta-D-glucan and xyloglucan, while EG I-CD was active against cellulose, 1,3-1,4-beta-D-glucan, xyloglucan, xylan, and mannan.
The stability and specific activity of endo-beta-1,4-glucanase III from Trichoderma reesei QM9414 was enhanced, and the expression efficiency of its encoding gene, egl3, was optimized by directed evolution using error-prone PCR and activity screening in Escherichia coli RosettaBlue (DE3) pLacI as a host. Relationship between increase in yield of active enzyme in the clones and improvement in its stability was observed among the mutants obtained in the present study. The clone harboring the best mutant 2R4 (G41E/T110P/K173M/Y195F/P201S/N218I) selected in via second-round mutagenesis after optimal recombinating of first-round mutations produced 130-fold higher amount of mutant enzyme than the transformant with wild-type EG III. Mutant 2R4 produced by the clone showed broad pH stability (4.4-8.8) and thermotolerance (entirely active at 55 degrees C for 30 min) compared with those of the wild-type EG III (pH stability, 4.4-5.2; thermostability, inactive at 55 degrees C for 30 min). k (cat) of 2R4 against carboxymethyl-cellulose was about 1.4-fold higher than that of the wild type, though the K (m) became twice of that of the wild type.
Previously, we achieved approximately 30-fold enhanced secretion of the protease-sensitive model protein human growth hormone (hGH) by multiple gene deletion of seven obstructive proteases in the fission yeast Schizosaccharomyces pombe. However, intracellular retention of secretory hGH was found in the resultant multiprotease-deficient strains. As a solution, genetic modification of the intracellular trafficking pathway that is related to intracellular retention of hGH was attempted on a protease octuple deletant strain. Vacuolar accumulation of the intracellularly retained hGH was identified by secretory expression of hGH fused with EGFP, and three vacuolar protein sorting (vps)-deficient strains, vps10Delta, vps22Delta, and vps34Delta, were determined on account of their hGH secretion efficiency. The mutant vps10Delta was found to be effective for hGH secretion, which suggested a role for vps10 in the vacuolar accumulation of the intracellularly retained hGH. Finally, vps10 deletion was performed on the protease octuple deletant strain, which led to an approximately 2-fold increase in hGH secretion. This indicated the possible application of secretory-pathway modification and multiple protease deletion for improving heterologous protein secretion from the fission yeast S. pombe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.