We have studied the roles of the homeobox genes orthodenticle (otd) and empty spiracles (ems) in embryonic brain development of Drosophila. The embryonic brain is composed of three segmental neuromeres. The otd gene is expressed predominantly in the anterior neuromere; expression of ems is restricted to the two posterior neuromeres. Mutation of otd eliminates the first (protocerebral) brain neuromere. Mutation of ems eliminates the second (deutocerebral) and third (tritocerebral) neuromeres. otd is also necessary for development of the dorsal protocerebrum of the adult brain. We conclude that these homeobox genes are required for the development of specific brain segments in Drosophila, and that the regionalized expression of their homologs in vertebrate brains suggests an evolutionarily conserved program for brain development.
[Keywords: Axonal transport; unc-51; kinesin adaptor; phosphorylation; motor-cargo assembly] Supplemental material is available at http://www.genesdev.org.
Associative strength between conditioned stimulus (CS) and unconditioned stimulus (US) is thought to determine learning efficacy in classical conditioning. Elucidation of the neuronal mechanism that underlies the association between CS and US in the brain is thus critical to understand the principle of memory formation. With a simple brain organization, the Drosophila larva provides an attractive model system to investigate learning at the neurocircuitry level. Previously, we described a single-odor paradigm for larval associative learning using sucrose as a reward, and showed that larval appetitive memory lasts longer than 2 h. In this work, we describe behavioral and genetic characterization of larval aversive olfactory memory formed in our paradigm, and compare its stability and neurocircuitry with those of appetitive memory. Despite identical training paradigms, larval olfactory memory formed with quinine or NaCl is shortlived to be lost in 20 min. As with appetitive memory, larval aversive memory produced in this paradigm depends on intact cAMP signaling, but neither mutation of amnesiac nor suppression of CREB activity affects its kinetics. Neurocircuitry analyses suggest that aversive memory is stored before the presynaptic termini of the larval mushroom body neurons as is the case with appetitive memory. However, synaptic output of octopaminergic and dopaminergic neurons, which exhibit distinctive innervation patterns on the larval mushroom body and antennal lobe, is differentially required for the acquisition of appetitive and aversive memory, respectively. These results as a whole suggest that the genetically programmed memory circuitries might provide predisposition in the efficacy of inducing longer-lived memory components in associative learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.