Human norovirus (NoV) strains cause a considerable number of outbreaks of gastroenteritis worldwide. Based on their capsid gene (VP1) sequence, human NoV strains can be grouped into two genogroups (GI and GII) and at least 14 GI and 17 GII genotypes (GI/1-14 and GII/1-17). Human NoV strains cannot be propagated in cell-culture systems, but expression of recombinant VP1 in insect cells results in the formation of virus-like particles (VLPs). In order to understand NoV antigenic relationships better, cross-reactivity among 26 different NoV VLPs was analysed. Phylogenetic analyses grouped these NoV strains into six GI and 12 GII genotypes. An antibody ELISA using polyclonal antisera raised against these VLPs was used to determine cross-reactivity. Antisera reacted strongly with homologous VLPs; however, a number of novel cross-reactivities among different genotypes was observed. For example, GI/11 antiserum showed a broad-range cross-reactivity, detecting two GI and 10 GII genotypes. Likewise, GII/1, GII/10 and GII/12 antisera showed a broad-range cross-reactivity, detecting several other distinct GII genotypes. Alignment of VP1 amino acid sequences suggested that these broad-range cross-reactivities were due to conserved amino acid residues located within the shell and/or P1-1 domains. However, unusual cross-reactivities among different GII/3 antisera were found, with the results indicating that both conserved amino acid residues and VP1 secondary structures influence antigenicity.
This report describes norovirus (NoV) and sapovirus (SaV) infections in hospitalized children with acute sporadic gastroenteritis in Ho Chi Minh City, Vietnam. Stool specimens collected between December 1999 and November 2000 were examined for NoV and SaV using reverse transcription-PCR and phylogenetic analysis. NoVs were detected in 72 of 448 rotavirus-negative specimens, counted as part of an overall annual detection rate of 5.4% (72 of 1,339 children). This included four NoV genogroup I (GI) strains and 68 NoV GII strains. Only one SaV GI strain was detected in the rotavirus-negative specimens. Over 73% of the NoV sequences belonged to GII/4 (Lordsdale cluster) and were detected in all months except March. We also detected GII/3 strains (Saitama U201 cluster), a naturally occurring recombinant NoV, between January 2000 and March 2000 but not after this period. Other NoV strains belonging to GI/4, GI/8, GII/1, and GII/7 were also detected but were infrequent. In addition, two almost identical NoV GII strains (strains 026 and 0703) collected six months apart were classified into a new genotype that includes the Mc37 strain, which was previously shown to be a recombinant NoV. During this one-year study, the NoV prevailed at the end of the rainy season and the beginning of the dry season. Further epidemiological studies may be necessary to determine whether the GII/4 strains continue to dominant in this region.
Norovirus (NV), a member of the family Caliciviridae, is one of the important causative agents of acute gastroenteritis. In the present study, we found that virus-like particles (VLPs) derived from genogroup II (GII) NV were bound to cell surface heparan sulfate proteoglycan. Interestingly, the VLPs derived from GII were more than ten times likelier to bind to cells than were those derived from genogroup I (GI). Heparin, a sulfated glycosaminoglycan, and suramin, a highly sulfated derivative of urea, efficiently blocked VLP binding to mammalian cell surfaces. The reagents known to bind to cell surface heparan sulfate, as well as the enzymes that specifically digest heparan sulfate, markedly reduced VLP binding to the cells. Treatment of the cells with chlorate revealed that sulfation of heparan sulfate plays an important role in the NV-heparan sulfate interaction.
Sapovirus (SaV), a member of the genus Sapovirus in the family Caliciviridae, is an agent of human and porcine gastroenteritis. SaV strains are divided into five genogroups (GI-GV) based on their capsid (VP1) sequences. Human SaV strains are noncultivable, but expression of the recombinant capsid protein (rVP1) in a baculovirus expression system results in the self-assembly of virus-like particles (VLPs) that are morphologically similar to native SaV. In this study, rVP1 constructs of SaV GI, GII, and GV strains were expressed in a baculovirus expression system. The structures of the GI, GII, and GV VLPs, with diameters of 41-48 nm, were morphologically similar to those of native SaV. However a fraction of GV VLPs were smaller, with diameters of 26-31 nm and spikes on the outline. This is the first report of GII and GV VLP formation and the first identification of small VLPs. To examine the cross-reactivities among GI, GII, and GV rVP1, hyperimmune rabbit antisera were raised against Escherichia coli-expressed GI, GII, and GV N- and C-terminal VP1. Western blotting showed the GI antisera cross-reacted with GV rVP1 but not GII rVP1; GII antisera cross-reacted weakly with GI rVP1 but did not cross-react with GV rVP1; and GV antisera reacted only with GV rVP1. Also, hyperimmune rabbit and guinea pig antisera raised against purified GI VLPs were used to examine the cross-reactivities among GI, GII, and GV VLPs by an antigen enzyme-linked immunosorbent assay (ELISA). The ELISA showed that the GI VLPs were antigenically distinct from GII and GV VLPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.