Formation of water (W) in supercritical carbon dioxide (scCO2) (W/scCO2) type microemulsions was examined using four hybrid surfactants, the sodium 1-oxo-1-[4-(tridecafluorohexyl)phenyl]-2-alkanesulfonates (FC6-HCn, n ) 2, 4, 6, and 8), which have a hydrocarbon chain of different length and a fluorocarbon chain in one molecule and an Aerosol-OT (AOT) analogue fluorinated twin tail type surfactant, sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO) 2). For comparison AOT was also used. The hybrid type surfactants (FC6-HCn) gave a transparent single phase, identified as a W/scCO2 microemulsion, with a water-to-surfactant molar ratio, W0 c < 7, irrespective of hydrocarbon chain length. The fluorinated AOT analogue also yielded a transparent single phase, again identified as a W/scCO2 microemulsion, with a W0 c value close to 32sone of the highest ever reported. The aqueous core in the 8FS(EO)2 reversed micelle was examined by FT-IR spectra using D2O. The spectra revealed that the aqueous core swells on addition of water and shrinks with increase in pressure. The remarkable ability of 8FS(EO) 2 to form a W/scCO2 microemulsion would be brought about by its high adsorption capacity and its excellent facility to lower the water/scCO2 interfacial tension, in addition to a low interaction and strong steric repulsion between its CO2-philic groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.