Abstract:We investigated the capabilities of a canopy height model (CHM) derived from aerial photographs using the Structure from Motion (SfM) approach to estimate aboveground biomass (AGB) in a tropical forest. Aerial photographs and airborne Light Detection and Ranging (LiDAR) data were simultaneously acquired under leaf-on canopy conditions. A 3D point cloud was generated from aerial photographs using the SfM approach and converted to a digital surface model (DSMP). We also created a DSM from airborne LiDAR data (DSML). From each of DSMP and DSML, we constructed digital terrain models (DTM), which are DTMP and DTML, respectively. We created four CHMs, which were calculated from (1) DSMP and DTMP (CHMPP); (2) DSMP and DTML (CHMPL); (3) DSML and DTMP (CHMLP); and (4) DSML and DTML (CHMLL). Then, we estimated AGB using these CHMs. The model using CHMLL yielded the highest accuracy in four CHMs (R 2 = 0.94) and was comparable to the model using CHMPL (R 2 = 0.93). The model using CHMPP yielded the lowest accuracy (R 2 = 0.79). In conclusion, AGB can be estimated from CHM derived from aerial photographs using the SfM approach in the tropics. However, to accurately estimate AGB, we need a more accurate DTM than the DTM derived from aerial photographs using the SfM approach.
The accurate and timely detection of forest disturbances can provide valuable information for effective forest management. Combining dense time series observations from optical and synthetic aperture radar satellites has the potential to improve large-area forest monitoring. For various disturbances, machine learning algorithms might accurately characterize forest changes. However, there is limited knowledge especially on the use of machine learning algorithms to detect forest disturbances through hybrid approaches that combine different data sources. This study investigated the use of dense Landsat 8 and Sentinel-1 time series data for detecting disturbances in tropical seasonal forests based on a machine learning algorithm. The random forest algorithm was used to predict the disturbance probability of each Landsat 8 and Sentinel-1 observation using variables derived from a harmonic regression model, which characterized seasonality and disturbance-related changes. The time series disturbance probabilities of both sensors were then combined to detect forest disturbances in each pixel. The results showed that the combination of Landsat 8 and Sentinel-1 achieved an overall accuracy of 83.6% for disturbance detection, which was higher than the disturbance detection using only Landsat 8 (78.3%) or Sentinel-1 (75.5%). Additionally, more timely disturbance detection was achieved by combining Landsat 8 and Sentinel-1. Small-scale disturbances caused by logging led to large omissions of disturbances; however, other disturbances were detected with relatively high accuracy. Although disturbance detection using only Sentinel-1 data had low accuracy in this study, the combination with Landsat 8 data improved the accuracy of detection, indicating the value of dense Landsat 8 and Sentinel-1 time series data for timely and accurate disturbance detection.
Abstract:In 2016, in response to forest loss, the Myanmar government banned logging operations for 1 year throughout the entire country and for 10 years in specific regions. However, it is unclear whether this measure will effectively reduce forest loss, because disturbance agents other than logging may have substantial effects on forest loss. In this study, we investigated an approach to attribute disturbance agents to forest loss, and we characterized the attribution of disturbance agents, as well as the areas affected by these agents, in tropical seasonal forests in the Bago Mountains, Myanmar. A trajectory-based analysis using a Landsat time series was performed to detect change pixels. After the aggregation process that grouped adjacent change pixels in the same year as patches, a change attribution was implemented using the spectral, geometric, and topographic information of each patch via random forest modeling. The attributed agents of change include "logging", "plantation", "shifting cultivation", "urban expansion", "water invasion", "recovery", "other change", and "no change". The overall accuracy of the attribution model at the patch and area levels was 84.7% and 96.0%, respectively. The estimated disturbance area from the attribution model accounted for 10.0% of the study area. The largest disturbance agent was found to be logging (59.8%), followed by water invasion (14.6%). This approach quantifies disturbance agents at both spatial and temporal scales in tropical seasonal forests, where limited information is available for forest management, thereby providing crucial information for assessing forest conditions in such environments.
Detecting forest disturbances is an important task in formulating mitigation strategies for deforestation and forest degradation in the tropics. Our study investigated the use of Landsat time series imagery combined with a trajectory-based analysis for detecting forest disturbances resulting exclusively from selective logging in Myanmar. Selective logging was the only forest disturbance and degradation indicator used in this study as a causative force, and the results showed that the overall accuracy for forest disturbance detection based on selective logging was 83.0% in the study area. The areas affected by selective logging and other factors accounted for 4.7% and 5.4%, respectively, of the study area from 2000 to 2014. The detected disturbance areas were underestimated according to error assessments; however, a significant correlation between areas of disturbance and numbers of harvested trees during the logging year was observed, indicating the utility of a trajectory-based, annual Landsat imagery time series analysis for selective logging detection in the tropics. A major constraint of this study was the lack of available data for disturbances other than selective logging. Further studies should focus on identifying other types of disturbances and their impacts on future forest conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.