Polarized and depolarized Raman scattering measurement and molecular dynamics (MD) calculations have been performed for supercritical CF3H at various densities along an isotherm higher than Tc by about 6 K in order to investigate the density dependence of rotational relaxation. The rotational autocorrelation functions obtained from both methods, which are in satisfactory agreement with each other, showed liquid-like diffusional decay for the fluid at densities higher than ρc. The function changed in shape continuously to a nearly free-rotor-like one at the lowest density going through the oscillatory ones at intermediate densities. The detailed analysis based upon the MD trajectories has been done in order to clarify the relaxation mechanism at each density. Applicability of the J-extended diffusion model was also examined. They showed that the density dependence of the rotational relaxation may be explained in terms of the states of molecular aggregation in the fluid.
A detailed study of the Ni-catalyzed [4+3+2] cycloaddition reaction between ethyl cyclopropylideneacetate and dienynes has been conducted, resulting in the development of a new method for the synthesis of compounds containing nine-membered rings. We studied the reactivity of various dienynes, together with their substituent and conformational effects. The mechanism of the reaction was probed by examining the stoichiometric reactions of the Ni complexes and dienynes.
High temperature oxidation tests from 600 to 1400•Ž were carried out for graphite/B4C/SiC/ZrB2 compo site in different atmospheres such as dry air, dry oxyg
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.